Final Exam Outline

2.3 The span of a set of vectors. Linear dependence. Linear dependence and independence. Determining whether a set $\{\vec{v}_1, \ldots, \vec{v}_k\}$ of vectors in \mathbb{R}^n is linearly dependent or independent.

3.5 Subspaces of \mathbb{R}^n. $\{0\}$ and \mathbb{R}^n as subspaces of \mathbb{R}^n. The subspace span(v_1, \ldots, v_k). The the row, column and null spaces of a matrix. Basis, dimension. Using Gaussian elimination to find a bases for subspaces of the form span(v_1, \ldots, v_k) and for null(A). The nullity of a matrix. Characterizations of rank: rank(A) = dim(col(A)) = dim(row(A)). The rank theorem. The Fundamental Theorem of Invertible Matrices. Coordinates with respect to a basis. Theorems 3.23-3.26, 3.27 (parts), 3.28 and 3.29.

4.1, 4.3 Eigenvalues, eigenvectors and eigenspaces. The characteristic polynomial. Finding a basis for an eigenspace.

5.1 Orthogonal sets in \mathbb{R}^n. Orthogonal and orthonormal bases. Orthogonal matrices. Theorems 5.1-5.8.

5.2 The orthogonal complement W^\perp of a subspace W. The orthogonal projection. Theorem 5.9, parts (a), (c) and (d). Theorem 5.11. (The Orthogonal Decomposition Theorem.)

5.3 The Gram-Schmidt procedure.

5.4 The eigenvalues and eigenvectors of real, symmetric matrices. Orthogonal diagonalization of real, symmetric matrices. Theorems 5.17-5.19.