Math 208 Parametrization Exercises

Parametrize each of the following curves (that includes specifying the starting and ending values of the parameter):

- 1. The straight line segment from (2,3,7) to (-1,4,3).
- 2. The portion of the circle $x^2 + y^2 = 25$ going counterclockwise from (0,-5) to (0,5).
- 3. The portion of the circle $x^2 + y^2 = 25$ going clockwise from (0,5) to (-5,0).
- 4. The portion of the circle $x^2 + y^2 = 8$ going counterclockwise from (2,-2) to (2,2).
- 5. The portion of the circle $(x-2)^2 + (y+4)^2 = 9$ going counterclockwise from (5,-4) to (2,-1).
- 6. The portion of the circle $(x-2)^2 + (y+4)^2 = 9$ going clockwise from (5,-4) to (2,-1).
- 7. The portion of the ellipse $x^2 + 4y^2 = 36$ going counterclockwise from (-6,0) to (6,0).
- 8. The portion of the ellipse $x^2 + 4y^2 = 36$ going clockwise from (0, -3) to (6,0).
- 9. The bottom half of the hyperbola $y^2 x^2 = 4$ going from left to right.
- 10. The portion of the curve $x = y^3 y$ going from (0,1) to (24,3).
- 11. The portion of the curve y = 4, $z = x^2 + x$ going from (1,4,2) to (-2,4,2).
- 12. The portion of the curve given by $y = x^3 3x$, $x = z^2$ going from (1,-2,-1) to (4,52,2).
- 13. The intersection of the cylinder $x^2 + y^2 = 16$ and the plane z = -2y traveled once counterclockwise as seen from above, starting at (0, -4, 8).

Answers

Note: There are many alternative parametrizations.

1.
$$x = 2 - 3t$$
, $y = 3 + t$, $z = 7 - 4t$, $0 \xrightarrow{t} 1$

2.
$$x = 5\cos(t), y = 5\sin(t), -\frac{\pi}{2} \xrightarrow{t} \frac{\pi}{2}$$

3.
$$x = 5\cos(t)$$
, $y = 5\sin(t)$, $\frac{\pi}{2} \xrightarrow{t} -\pi$ or $x = 5\cos(t)$, $y = -5\sin(t)$, $-\frac{\pi}{2} \xrightarrow{t} \pi$

4.
$$x = \sqrt{8} \cos(t), y = \sqrt{8} \sin(t), -\frac{\pi}{4} \xrightarrow{t} \frac{\pi}{4}$$

5.
$$x = 2 + 3\cos(t)$$
, $y = -4 + 3\sin(t)$, $0 \xrightarrow{t} \frac{\pi}{2}$

6.
$$x = 2 + 3\cos(t)$$
, $y = -4 + 3\sin(t)$, $0 \xrightarrow{t} -\frac{3\pi}{2}$ or $x = 2 + 3\cos(t)$, $y = -4 - 3\sin(t)$, $0 \xrightarrow{t} \frac{3\pi}{2}$

7.
$$x = 6\cos(t), y = 3\sin(t), -\pi \xrightarrow{t} 0$$

8.
$$x = 6\cos(t), y = 3\sin(t), \frac{3\pi}{2} \xrightarrow{t} 0 \text{ or } x = 6\cos(t), y = -3\sin(t), \frac{\pi}{2} \xrightarrow{t} 2\pi$$

9.
$$x = 2\sinh(t)$$
, $y = -2\cosh(t)$, $-\infty \xrightarrow{t} \infty$ or $x = 2\tan(t)$, $y = 2\sec(t)$, $\frac{\pi}{2} \xrightarrow{t} \frac{3\pi}{2}$

10.
$$x = t^3 - t$$
, $y = t$, $1 \xrightarrow{t} 3$

11.
$$x = t$$
, $y = 4$, $z = t^2 + t$, $1 \xrightarrow{t} -2$ or $x = -t$, $y = 4$, $z = t^2 - t$, $-1 \xrightarrow{t} 2$

12.
$$x = t^2$$
, $y = t^6 - 3t^2$, $z = t$, $-1 \xrightarrow{t} 2$

13.
$$x = 4\cos(t)$$
, $y = 4\sin(t)$, $z = -8\sin(t)$, $\frac{-\pi}{2} \xrightarrow{t} \frac{3\pi}{2}$