
Math 208
Surface integrals and the differentials for flux integrals

Our text fails to explicitly state the formulas for  , instead preferring to give formulas fordσn
n and  separately.  But the proof on page 889 of the formula  on pagedσ u vd du dvσ = ×r r

890 actually shows that  – that is,  is a vector of length u vd du dvσ = ± ×n r r u v du dv×r r dσ
and direction normal to the surface, and the only such vectors in 3D are that and its negative!  
Regarding  as the basic formula rather than n and  separately is simpler - when youdσn dσ
need , it can be obtained as simply , while n itself is just the unit vector in thedσ dσn

direction of  .  Finding n and  separately and multiplying them when doing a fluxdσn dσ
integral leads to computing  twice, once in the denominator of n and once in , onlyu v×r r dσ
to cancel these every time!  Why do that?

If the surface is given parametrically by , then . (1)( , )u vr u vd du dvσ = ± ×n r r

Our book also fails to state the formulas for  when the surface is written as one variable is adσn

function of the other two.  These are the most common cases used, and knowing  for thosedσn
cases saves several steps.  Suppose  with  f  differentiable.  Using  y  and  x  as our( , )z f x y=
parameters leads to , so, , ( , )x y f x y= < >r

, giving:0,1, 1,0, , , 1y x y x x yf f f f× = < > × < > = < − >r r

If the surface is part of , then  . (2)( , )z f x y= ( )x yd f f dy dxσ = ± + −n i j k

Formulas for  always have a choice of sign which depends on the orientation of the surfacedσn
involved.  E.g. in (2),  + gives downward orientation, ! gives upward (since up/down is
determined by the k coefficient).  Also, be aware that the integral can, of course, be done using

 as indicated, , or  even .dy dx dx dy r dr dθ

Example 1:  Find the flux of  over that portion of the upward( , , ) 3 ,3 , 2x y z x y z=< − >F

oriented paraboloid  which satisfies . 2 2 0x y z+ − = 9z ≤

Solution:  The surface equation gives us , so .  Since we
2 2z x y= + 2 2( , )f x y x y= +

want upward oriented, ,which( ) 2 , 2 ,1x yd f f dy dx x y dy dxσ = − + − = < − − >n i j k
leads to:
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But  Rxy  is the region in the xy-plane where , the inside of the circle of radius2 2 9z x y= + ≤
3 centered at the origin, which means this integral is best done in polar coordinates.  We get:
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The above example can also be done by parameterizing  r  in terms of  r  and  2.  However, as
above, it is usually simpler to set up the integral in terms of  x  and  y, and then convert the
integral to polar coordinates, rather than find  . r θ×r r

Note that one can “rotate” the roles of the variables, and get corresponding formulas:

 If the surface is part of , then  . (3)( , )x f y z= ( )y zd f f dy dzσ = ± − + +n i j k
and likewise

If the surface is part of , then  . (4)( , )y f x z= ( )x zd f f dx dzσ = ± − +n i j k
Also note that the formulas for  in these settings (which are implicit in the formulas at thedσ
bottom of p. 895 and top of p. 896) are again just the formulas for the lengths of these vector
differentials.  In general, if you find yourself having trouble memorizing all of the differentials

for surface integrals, memorize just the ones for flux (i.e. the  formulas), and if you’redσn
doing a surface integral which is not a flux integral, find  by taking the length of the vectordσ
part of :dσn

Since n  is a unit vector, , so .  Thus:1=n d d dσ σ σ= =n n

If the surface is given parametrically by , then . (1a)( , )u vr u vd du dvσ = ×r r

If the surface is part of , then  . (2a)( , )z f x y= 2 2 1
x y

d f f dy dxσ = + +
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 If the surface is part of , then  . (3a)( , )x f y z= 2 21
y z

d f f dy dzσ = + +

If the surface is part of , then  . (4a)( , )y f x z= 2 21
x z

d f f dx dzσ = + +

Example 2:  Integrate  over the surface cut from the parabolic cylinder2( , , ) 4G x y z x y= +

 by the planes , , and .  (This is problem 14 on page 903 of the2 4 16y z+ = 0x = 1x = 0z =
text.)

Solution:  The surface can be written as , so
2

4
4 ( , )yz f x y= − =

2
, , 1 0, , 1y

x yd f f dy dx dy dxσ = ± < − > = ± < − − >n

Thus  and on the surface,
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.  So20 16 4z y y= ⇒ = ⇒ = ±

( )
( ) ( )

2 2

32

1 44 ( 4)2
2 20 4

41
64 561 1 1

2 2 3 2 2 3 30 4

4

4 16 2

xy

y x y

S R

yx

G d x y dy dx dy dx

y

σ + +

−

−

= + =

 = + = ⋅ ⋅ + = 
 

∫∫ ∫∫ ∫ ∫

The formulas given in the book for the level surface  are generally harder to use( , , )g x y z c=
than the formulas above, and the surfaces we use are almost always either easy to parametrize or
easy to solve for one of the variables in terms of the other two, so if you know the above
formulas and know how to parametrize standard surfaces, you’re generally covered.  In fact, the

formula using  for  as at the bottom of page 900 is precisely formula (2) above if g
g

dA±∇
∇ pi

dσn

p = k and the partials  and  are calculated implicitly from the level surfacez
x x

f ∂
∂= z

y y
f ∂

∂=

equation.  Likewise, it is precisely formula (3) if  p =  i  or formula (4) if  p =  j  and the
derivatives are found implicitly.

The only case that is at all common where it is actually advantageous to think in terms of  n and
 separately is in the special case where flux can be found geometrically.  Ifdσ

 is constant on the surface S (note F1(scalar component of  in the direction of )c= =F n F ni

can always be written as a vector parallel to  n  plus a vector perpendicular to  n, and this says the
length of the part parallel to  n  stays the same on the entire surface) and the surface area of  S  is



known, then .1 (Surface area of )
S

d c Sσ = ⋅∫∫F ni

Example 3:  Find the flux of  across the first octant portion of  the( , , ) 4 ,4 ,4x y z x y z= < >F

sphere , oriented away from the origin. 2 2 2 9x y z+ + =

Solution:  Note that .  On this sphere, that means2 2 24 , , 4x y z x y z= < > = + +F

.  But also, F points directly away from the origin, which is the same direction as4 9 12= =F

the outward unit normal n to the sphere at that point.  Thus at each point on the sphere,

 (since n is a unit normal).  Also, the surface area of a1cos(0 ) 12 c= ⋅ ° = = =F n F n Fi

sphere of radius r  is  (easy to remember since it’s the derivative of the volume), or in this24 rπ
case 36B, which means the surface area of the first octant portion is .   Thus the flux is36 9
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Flux integral problems

1. Find the flux of  over the upward oriented portion of
2( , , ) 2 ,0,4x y z z y= < >F

 that is defined by and .22 3z x y= + + 1 3x− ≤ ≤ 1 4y≤ ≤
2. Find the flux of  over the portion of the surface( , , ) 3,1, 2x y z = < − >F

 that has ,  and is oriented toward decreasing y.
2 2y z x+ = 2x−2 ≤ ≤ 2 z− ≤ ≤ 4

3. Find the flux of  over the finite piece of ( , , ) 2 , ,x y z x y z= < >F 2 4x y z=
bounded by , , and , if the orientation is away from you as2z = − y z= − 2y z=
viewed from a point on the negative x-axis.

4. Find the flux of each of the following through the portion of the cylinder 2 2 25y z+ =
with , if the surface is oriented toward the x-axis (i.e., the cylinder is oriented1 2x− ≤ ≤
inward):
a)  b)  ( , , ) 0,2 ,2x y z y z= < >F ( , , ) 3 , 4 , 4x y z xz y z= < − − >F



Answers:
1. !240
2. 72
3. !384
4. a)  !300B

b)  600B


