8/23
Section: 4.4
Agenda: Introduction. Riemann sums and the definite integral.

8/24
Section: 4.4
Agenda: The definite integral. Area and signed area. Calculation and approximation of definite integrals by Riemann sums. Properties of the definite integral.
Assignment: Read examples 4.2, 4.4 and 4.6. Do problems 13-25 odd.

8/25
Section: 4.4
Agenda: Properties of the definite integral. The Integral Mean Value Theorem.
Assignment: Do problems 31-37 odd, 49 and 51.
Summary: Partitions and evaluation points. The definition of the definite integral as the limit of Riemann sums. Approximation of a definite integral by a Riemann sum with large n. Evaluation of a definite integral by taking the limit as $n \to \infty$ in a Riemann sum. The definite integral as area or signed area. Properties of the definite integral. The average value of a function. The Integral Mean Value Theorem.

8/26
Section: 4.5
Agenda: The Fundamental Theorem.
Assignment: Do problems 5-15 odd.
Notes: We’ll have a quiz over 4.5 and 4.6 on Wednesday, 9/1.

8/27
Section: 4.5
Agenda: The Fundamental Theorem.
Assignment: Do problems 17-23 odd, 41-51 odd, 71 and 77. Read examples 5.1-5.7, 5.9 and 5.12.
Summary: The statements and proofs of both parts of the Fundamental Theorem. Evaluation of indefinite integrals and differentiation of integrals with variable limits of integration.

8/30
Section: 4.6
Agenda: Recitation. Integration by substitution.
Assignment: In 4.6, do 5-15 odd, 47-51 odd, 67 and 69.
Words: kibbitz, quincunx
8/31 Section: 4.7
 Agenda: Numerical Integration. The midpoint and trapezoid rules.

9/1 Section: 4.7
 Assignment: Read examples 7.1-7.6 and 7.8. Do problems 7, 9, 13, 17, 31. In 13 and 17, you need only do the calculation with \(n = 10 \).
 Summary: Use of the midpoint, trapezoid and Simpson rules. The trapezoid rule approximates the integrand \(f \) over \([x_{i-1}, x_i]\) with a linear function that agrees with \(f \) at \(x_{i-1} \) and \(x_i \). It returns the average of the left and right hand Riemann sums. Simpson’s rule approximates the integrand \(f \) over \([x_{i-2}, x_i]\) with a quadratic function that agrees with \(f \) at \(x_{i-2}, x_{i-1} \) and \(x_i \).

9/2 Sections: 5.1, 5.2
 Agenda: Areas and volumes.
 Assignment: In 5.1, read examples 1.4 and 1.5, and do problems 5 and 29.

9/3 Section: 5.2
 Agenda: Volumes by disks and washers.
 Assignment: In 5.2, read examples 2.2 and 2.5. Do problems 9, 11, 17, 21, 23 and 31.
 Review: In 4.5, do problems 55 and 57.
 Notes: We’ll have quiz over 5.2 on Wednesday, 9/8.
 Summary: The derivation and use of integrals to compute volumes. The method of disks and, in the presence of cavities, the method of washers.

9/7 Section: 5.3
 Assignment: In 5.3, read examples 3.1-3.3. Do problems 13-17 odd.
 Notes: We’ll have quiz over 5.2 on Wednesday, 9/8.
 Summary: The derivation and use of integrals to compute volumes by the shell method.

9/8 Section: 5.5
 Agenda: Quiz #2. Projectile motion.
 Assignment: In 5.5, do problems 7, 15, 25, 27 and 35.

9/9 Section: 5.6
 Agenda: Loops in Maple. Work.
 Assignment: In 5.6, read examples 6.1-6.3. Do problems 7-19 odd.
 Review: In 4-R, do problems 45-55 odd.
9/10 Section: 5.6
Agenda: Impulse and hydrostatic force and pressure.
Assignment: In 5.6, do problems 37, 39 and 41.
Review: In 4-R, do problems 57, 59 and 61.
Summary: The derivation and use of integrals to compute work and hydrostatic force.

9/13 Section: 5.7
Agenda: Introduction to probability. Random variables, histograms.
Notes: We’ll have an exam over chapters 4 and 5 on Monday, 9/20.

9/14 Section: 5.7
Assignment: In 5.7, read examples 7.1-7.5, and do problems 9, 13, 19, 25, 31-37 odd.
Summary: Use of pdf’s to compute probabilities, means and medians for continuous random variables.

9/15 Agenda: Review.
Notes: We’ll have an exam over chapters 4 and 5 on Monday, 9/20.

9/16 Section: 6.2
Agenda: Inverse functions. One-to-one functions and the horizontal line test. Solving for inverses. The graph and derivative of an inverse function.
Assignment: In 6.2, read examples 2.3, 2.5, 2.7 and 2.9. Do problems 19-27 odd.
Review: In 5-R, do problems 7, 11, 13 and 15.

9/17 Section: 6.7
Agenda: The inverse trigonometric functions. Simplification of expressions involving trigonometric and inverse trigonometric functions.
Assignment: In 6.7, do problems 5-23 odd.
Review: In 5-R, do problems 27, 33, 37, 38, 45 and 47.
Words: widdershins, deasil, floccinaucinihilipilification

9/20 Agenda: Exam 1.

9/21 Sections: 6.8, 6.9
Agenda: The calculus of inverse trigonometric functions. The hyperbolic functions.
Assignment: In 6.8, read example 8.4 and do problems 5, 9 and 17-25 odd. In 6.9, read examples 9.1 and 9.2, and do problems 25-29 odd.
9/22 Section: 7.2
Agenda: Integration by parts.
Assignment: In 7.2, do problems 7-13 odd, 19-23 odd, 41 and 43.

9/23 Section: 7.3
Agenda: Trigonometric techniques of integration.
Assignment: In 7.3, read examples 3.6-3.8 and 3,10. Do problems 3, 5, 13, 27, 35 and 51.
Summary: Integrands of the form \(\sin^m x \cdot \cos^n x \) where \(n \) or \(m \) is an odd, positive integer. Use of the half angle formulas for integrands involving even powers of \(\sin \) and \(\cos \). Integrands involving sec and tan. The substitutions \(x = a \sin \theta \), \(x = a \tan \theta \) and \(x = a \sec \theta \) for integrands involving \(\sqrt{a^2 - x^2} \), \(a^2 + x^2 \) and \(\sqrt{x^2 - a^2} \) respectively.
Words: duniewassal

9/24 Section: 7.4
Agenda: Partial fraction decomposition: Linear factors.
Notes: There will be a quiz on Wednesday, 9/29, over 7.3.

9/27 Section: 7.4
Agenda: Partial fraction decomposition: Quadratic factors. Completing the square in an integrand.)
Assignment: In 7.4, do 3-13 odd.
Summary: Partial fraction decomposition (PFD) of a rational function

\[
f(x) = \frac{P(x)}{Q(x)},
\]

where the degree of \(Q \) exceeds that of \(P \). (If this is not the case, use long division.) If \(Q(x) \) has a factor of the form \((ax + b)^n \), the sum

\[
\frac{c_1}{ax + b} + \cdots + \frac{c_n}{(ax + b)^n},
\]

appears in the PFD. If \(Q(x) \) has an irreducible \((b^2 - 4ac < 0) \) quadratic factor \(ax^2 + bx + c \), then a term of the form

\[
\frac{Ax + B}{ax^2 + bx + c},
\]

appears in the PFD.
Section: 7.6
Agenda: L'Hôpital’s rule and indeterminate forms.
Assignment: In 7.6, read examples 6.5, 6.9 and 6.10. Do problems 7-17 odd.
Notes: There will be a quiz on Wednesday, 9/29, over 7.3.
Summary: For limit forms \(\frac{0}{0} \) and \(\frac{\infty}{\infty} \), apply L'Hôpital’s rule until the form of the limit is no longer indeterminate. If the limit has the form \(0 \cdot \infty \) or \(\infty - \infty \), rewrite it as \(\frac{0}{0} \) or \(\frac{\infty}{\infty} \), and then apply L'Hôpital’s rule. For limits of the types \(1^\infty \), \(0^\infty \), \(0^0 \) or \(\infty^0 \), take the natural log, apply L'Hôpital’s rule (if appropriate), and then exponentiate (to cancel the log).

Section: 7.7
Agenda: Quiz #3. Introduction to improper integrals.

Section: 7.7
Agenda: Improper integrals: Continuous integrands over infinite domains. Applications to probability. Writing assignment #1.
Review: In 7.6, do problems 19-25 odd.
Notes: Writing assignment #1 is due on Friday, 10/8.
Words: antediluvian, prelapsarian

Section: 7.7
Agenda: Improper integrals: Unbounded integrands over finite and infinite domains. The comparison test.
Assignment: In 7.7, read examples 7.1-7.5. Do problems 3-21 odd and 51-59 odd.

Section: 8.1
Assignment: In 8.1, do problems 15-33 odd and 59.
Review: In 7-R, do problems 1-5.

Section: 8.1
Assignment: In 8.1, do problems 35-49 odd.
Review: In 7-R, do problems 6-10.
Notes: We’ll have exam #2 on Wednesday, 10/13. The exam will cover the material from chapters 6 and 7.
10/6 Section: 8.2
 Assignment: In 8.2 read theorem 2.3 and do problems 5-15 odd.
 Review: In 7-R, do problems 11-15, 45 and 46.

10/7 Section: 8.3
 Agenda: Infinite series. The integral and comparison tests. The p-series. The divergence of the harmonic series.
 Assignment: In 8.3, do problems 5-15 odd.
 Notes: We’ll have exam #2 on Wednesday, 10/13. The exam will cover the material from chapters 6 and 7.

10/8 Section: 8.3
 Agenda: Infinite series. The comparison and limit comparison tests.
 Assignment: In 8.3, do problems 17-31 odd.
 Review: In 7-R, do problems 26-35.

10/11 Agenda: Review.

10/12 Sections: 8.4, 8.5.
 Notes: We’ll have exam #2 tomorrow.

10/13 Agenda: Exam 2.

10/14 Section: 8.5
 Agenda: Conditional and absolute convergence. The ratio and root tests.
 Assignment: In 8.4, do problems 5-15 odd. In 8.5, do 5-17 odd and read the proof of theorem 5.1.
 Summary: For a summary of convergence tests, see page 672 of the text.

10/15 Section: 8.6
 Agenda: Introduction to power series. Radius and interval of convergence.

10/20 Section: 8.6
 Agenda: Behavior of power series. Convergence, term-by-term differentiation and integration. Derivation of power series for \((1 + x)^{-1}\) and \(\ln(1 + x)\).
 Assignment: In 8.6, do problems 21-37 odd.
10/21 Section: 8.6
Agenda: Review. Differentiation and integration of power series. Derivation of power series for \((1 + x^2)^{-1}\) and \(\arctan x\).

Assignment: In 8.6, do problems 5-19 odd and 39-45 odd.

Summary: Let \(r\) be the radius of convergence of the power series
\[
\sum_{k=0}^{\infty} b_k(x - c)^k.
\]

Either \(r = 0\), and the series converges only at \(x = c\), \(r = \infty\) and the series converges absolutely for all \(x\), or \(0 < r < \infty\) and the series converges absolutely for \(|x - c| < r\) and diverges for \(|x - c| > r\). In this last case, the endpoints \(x = c \pm r\) have to be tested separately for convergence. You can differentiate and integrate power series term-by-term. The new series will have the same radius of convergence as the old, though the endpoint behavior might change. (Once again, you have to test the endpoints separately.)

10/22 Section: 8.7
Agenda: Introduction to Taylor series.

Review: In 8.5, do problems 19-27 odd.

Notes: We’ll have a quiz over 8.7 on Wednesday, 10/27.

10/25 Section: 8.7
Agenda: Taylor series for \(e^x\), \(\sin x\) and \(\cos x\) about \(c = 0\). The Taylor series for \(\ln x\) about \(c = 1\).

Assignment: In 8.7, do problems 7-27 odd.

Notes: We’ll have a quiz over 8.7 on Wednesday, 10/27.

10/26 Section: 8.7
Agenda: Calculation of Taylor series. New series from old. Taylor polynomials.

Notes: We’ll have a quiz over 8.7 on Wednesday, 10/27.

Words: boustrophedon, boustrophedonically

10/27 Section: 8.7
Agenda: Quiz #4. Approximation by Taylor polynomials.
10/28
Section: 8.7
Agenda: Approximation by Taylor polynomials. Taylor’s theorem as an extension of the mean value theorem. Using Taylor’s theorem to obtain approximations of prescribed accuracy.
Assignment: In section 8.7, do 33-51 odd.

10/29
Section: 8.7
Agenda: Review. Using Taylor’s theorem to obtain approximations of prescribed accuracy.

11/1
Section: 8.7
Agenda: Review.
Notes: We’ll have exam #3 on Monday, 11/8.

11/2
Sections: 8.7, 8.8
Agenda: Review. Applications of Taylor series. The Coates-Euler formula. Approximation of definite integrals.
Assignment: In section 8.8, read examples 8.1-8.3 and do problems 5, 11, 19, 23, 27 and 37.

11/3
Section: 8.8
Agenda: Applications of Taylor series. Approximation of definite integrals.
Review: In 8-R, do 19-21, 25 and 27.
Notes: We’ll have exam #3 on Monday, 11/8. The exam will cover the material from chapter 8.
Words: pleonasm

11/4
Section: 8.8
Agenda: Applications of Taylor series. Computation of limits, series representation of Bessel functions, approximation of functions in physics.
Assignment: In 8.8 do problems 7, 13, 21, 29.
Review: In 8-R, do 22, 29-37 odd, 45 and 47.

11/5
Section: 8.8
Agenda: Review. Applications of Taylor series. Approximation of functions in physics.
Review: In 8-R, do 39-43 odd, 49, 53-75 odd.

11/8
Agenda: Exam #3.
11/9 **Section:** 8.9
Agenda: Introduction to Fourier series. Trigonometric polynomial approximation of 2π-periodic functions. “Good” convergence for smooth functions.

11/10 **Section:** 8.9
Agenda: Fourier series. The Euler-Fourier formulas. Calculation of Fourier coefficients for 2π-periodic functions.
Assignment: In 8.9 read examples 9.1 and 9.2 and do problems 5-11 odd.

11/11 **Section:** 8.9
Agenda: Fourier series for $2L$-periodic functions. Convergence of Fourier series. The Dirchlet-Jordan theorem.
Assignment: In 8.9 read examples 9.1 and 9.2 and do problems 5-11 odd.

11/12 **Section:** 8.9
Agenda: Review of exam #3. Odd and even functions and the calculation of Fourier coefficients. Using Fourier series to sum numerical series.
Assignment: In 8.9 read example 9.3 and do problems 13-17 odd, 25 and 30-35.
Notes: We’ll have a quiz on 8.9 on Wednesday, 11/17.

11/15 **Section:** 8.9
Agenda: Review of exam #3. Parseval’s identity. Root-mean-square convergence of Fourier series.

11/16 **Section:** 9.1

11/17 **Section:** 9.1
Agenda: Quiz #5. Parametric equations of circles. ellipses and straight lines.
Assignment: In 9.1 do problems 5-21 odd, 35-37 odd, 43-47 odd, 61 and 62.
Words: hebetude

11/18 **Section:** 9.2
Agenda: Calculus of parametric equations.
11/19 **Sections:** 9.2, 9.3
Agenda: Tangent lines to curves defined parametrically. Speed and arclength.
Assignment: In 9.2, do problems 5, 7, 13, 17, 21, 23, 43 and 44. In 9.3, read example 3.3 and do problems 5 and 7.
Notes: We’ll have a quiz over 9.1 and 9.2 on Tuesday, 11/23.

11/22 **Section:** 9.3
Agenda: Arclength of a parametric curve and the surface area of a solid of revolution.
Assignment: In 9.3, do problems 5, 7, 27 and 29.

11/23 **Sections:** 9.3, 9.4
Agenda: Quiz #6. The brachistochrone problem. Polar coordinates.

11/29 **Sections:** 7.2, 7.4
Agenda: Review of techniques of integration. Integration by parts. Partial fraction decomposition.
Review: In 7-R, do problems 37-44 (general integration), 45-50 (partial fractions), 51-60 (integration tables) and 69-76 (improper integrals).
Notes: The final exam will be given at 7:30 AM on Wednesday, 12/15.

11/30 **Sections:** 7.3, 7.7
Agenda: Review of integration. Trigonometric techniques. Improper integrals.
Review: In 7.3, do problems 3-45 odd.

12/1 **Sections:** 8.2-8.5

12/2 **Sections:** 8.6
Review: In 8-R, do problems 19 and 21, and 25-49 odd.

Math 107H Fall 2004 Cumulative Homework List

4.5: 5-15 odd, 17-23 odd, 41-45 odd, 55, 57, 71, 77.
4.6: 5-15 odd, 47-51 odd, 67, 69.
4.7: 7, 9, 13, 17, 31.
4-R: 45-61 odd.
5.1: 5, 29.
5.2: 9, 11, 17, 21, 23, 31.
5.3: 13-17 odd.
5.5: 7, 15, 25, 27, 35.
5.6: 7-19 odd, 37, 39, 41.
5.7: 9, 13, 19, 25, 31-37 odd.
5-R: 7, 11, 13, 15.
6.2: 19-27 odd, 27, 33, 37, 38, 45, 47.
6.7: 5-23 odd.
6.8: 5, 9, 17-25 odd.
6.9: 25-29 odd.
7.2: 7-13 odd, 19-23 odd, 41, 43.
7.3: 3, 3-45 odd, 51.
7.4: 3-13 odd.
7.6: 7-25 odd.
7.7: 3-21 odd, 27, 28, 31, 32, 45, 46, 51-59 odd.
7-R: 1-60, 69-76.
8.1: 15-49 odd, 59.
8.2: 5-15 odd.
8.3: 5-31 odd.
8.4: 5-15 odd.
8.5: 5-27 odd.
8.6: 5-45 odd.
8.7: 7-27 odd, 33-51 odd.
8.8: 5, 7, 11, 13, 19, 21, 23, 27, 29, 37.
8.9: 5-17 odd, 25, 30-35.
8-R: 19-22, 25-49 odd, 53-75 odd.
9.1: 5-21 odd, 35-37 odd, 43-47 odd, 61, 62.
9.2: 5, 7, 13, 17, 21, 23, 43, 44.
9.3: 5, 7, 27, 29.
9.4:
9-R: