1. Let R be a Noetherian domain and M a finitely generated R-module. Prove that the set of primes p of R such that M_p is torsion free is an open subset of $\text{Spec } R$.

Proof: Claim: $T(M)_S = T(M_S)$ where $T(\cdot)$ denotes the torsion submodule. Let $\frac{m}{s} \in T(M)_S$. Then $\exists t \in R$ a nonzerodivisor such that $tm = 0$. Thus, $\frac{t}{1} \cdot \frac{m}{s} = 0 = \frac{0}{s}$. Note that $\frac{t}{1}$ is a nonzerodivisor as t is a nonzerodivisor. Indeed, if $\frac{1}{T} \neq \frac{1}{T}$ then there would exist a $k \in S$ such that $ktu = 0$, a contradiction. Hence, $\frac{m}{s} \in T(M_S)$. Next, let $\frac{m}{s} \in T(M_S)$. Then $\exists t$ a nonzerodivisor such that $\frac{tm}{s} = 0 = \frac{0}{s}$. So, there exists $k \in S$ such that $krm = 0$. Now kr is not a zerodivisor for similar reasons above, so that $m \in T(M)$. Hence, $\frac{m}{s} \in T(M_S)$. Now, (suggestively) let $\mathcal{O} = \{p \in \text{Spec } R \mid M_p$ is torsion free$\}$. So, we know that $p \in \mathcal{O} \iff T(M_p) = 0 \iff T(M)_p = 0$, by the claim above. So, since $T(M)_p = 0$ and $T(M)$ is finitely generated (since its a submodule of a finitely generated module over a Noetherian ring), we have that $T(M)_p = 0 \iff \text{Ann}_R T(M) \notin p$. So, $p \in \mathcal{O} \iff \text{Ann}_R T(M) \notin p$, hence we have by definition that $\mathcal{O} = \text{Spec } R \setminus \text{Ann}_R T(M)$, hence \mathcal{O} is open in $\text{Spec } R$.

2. Let R be a domain. Suppose $0 \to P_1 \to P_0 \to M \to 0$ is an exact sequence of R-modules where P_1 and P_0 are finitely generated projective R-modules. Prove that rank $P_1 \leq$ rank P_0 with equality if and only if M is torsion.

Proof: As R is a domain, the ideal (0) is prime. So we will localize the above exact sequence at (0).

Also, note that a domain localized at the zero ideal is the field of fractions $Q(R)$ of R. Also, as P_1 and P_0 are finitely generated projective R-modules they are locally free, so that $(P_1)_0 \cong (Q(R))^m$ and $(P_0)_0 \cong (Q(R))^n$ where $m = \text{rank } P_1$ and $n = \text{rank } P_0$. So, localizing the above exact sequence gives the exact sequence $0 \to (Q(R))^m \xrightarrow{f} (Q(R))^n \to M_0 \to 0$. So, the map f is injective by exactness, and is a map of $Q(R)$-vector spaces. Therefore, we must have that $m \leq n$. In addition, $m = n$ if and only if f is an isomorphism if and only if $M_0 = 0$. So if $M_0 = 0$, then $\frac{m}{s} = \frac{0}{1}$ for all $\frac{m}{s} \in M_0$. So, we have for each $m \in M$, there exists a $t \neq 0$ such that $tm = 0$. Note all nonzero ring elements of R are nonzerodivisors. Thus M is torsion. Suppose M is torsion, and let $\frac{m}{s} \in M_0$. Then as M is torsion, there exists a nonzerodivisor t (i.e. $t \notin \mathcal{O}$) such that $tm = 0$. Therefore, $\frac{m}{s} = \frac{0}{1}$ for all $\frac{m}{s} \in M_0$. Therefore $M_0 = 0$. So, $m = n$ if and only if M is torsion.

3. A ring is called reduced if it has no nonzero nilpotent elements. Prove that R is reduced if and only if R_p is reduced for all $p \in \text{Spec } R$.

Proof: \Rightarrow: Let R be reduced, and let $\frac{r}{s} \in R_p$ such that $(\frac{r}{s})^k = 0$ for $p \in \text{Spec } R$. Then $\frac{r^k}{s^k} = 0 = \frac{0}{1}$ so that there exists $t \in R \setminus p$ such that $tr^k = 0$. But, we note that $(tr)^k = t^k r^k = t^{k-1} tr^k = 0$. So, as R is reduced, we know that $tr = 0$. So, we have that $\frac{r}{s} = \frac{0}{1}$. Hence, R_p is reduced for all $p \in \text{Spec } R$.

\Leftarrow: Let R_p be reduced for all $p \in \text{Spec } R$. Let $r \in R$ be such that $r^k = 0$ for some k. Then $(\frac{r}{s})^k = \frac{r^k}{s^k} = 0 = \frac{0}{1}$. Hence $\frac{r}{s} = \frac{0}{1}$ in R_p for all $p \in \text{Spec } R$ as R_p is reduced. So, for all $p \in \text{Spec } R$, there exists $t \in R \setminus p$ such that $tr = 0$. In particular, for all maximal ideals m, there exists $t \in R \setminus m$ such that $tr = 0$. So, let $m^* \in \mathcal{O}$ be the maximal ideal containing $\text{Ann}_R r$ (if $\text{Ann}_R r = R$ then $r = 0$, so then we are done). So by the above argument, there exists a $t \notin m^*$ such that $tr = 0$, a contradiction to $t \notin \text{Ann}_R r$. Hence $r = 0$. Therefore, R is reduced.
4. Let \(R \) be a Noetherian ring. Prove that there exists a nonzero element \(x \in R \) such that \(\text{Ann}_R x \) is a prime ideal of \(R \).

Proof: Suppose that for all nonzero \(x \in R \), we have that \(\text{Ann}_R x \) is not a prime ideal, and let \(x \in R \) such that \(\text{Ann}_R x = R \), which we may do in any nonzero ring with identity. Then there exist \(a_1, r_1 \notin \text{Ann}_R x \) such that \(a_1 r_1 \in \text{Ann}_R x \). Now we also have that \(\text{Ann}_R x \) is not prime by assumption so that there exist \(a_2, r_2 \notin \text{Ann}_R x \) such that \(a_2 r_2 \in \text{Ann}_R x \), and we can also consider \(\text{Ann}_R x \). Note that \(\text{Ann}_R x \subseteq \text{Ann}_R x \subseteq \text{Ann}_R x \) as \(a_2 \notin \text{Ann}_R x \) but not in \(\text{Ann}_R x \) and \(a_1 \in \text{Ann}_R x \) but not in \(\text{Ann}_R x \). Continuing in this manner, we may construct an infinite ascending chain of ideals, contradicting that \(R \) is Noetherian. Therefore, there must exist a spot in our chain where this process stops, namely, an \(x \) such that \(\text{Ann}_R x \) is prime.

5. Let \((R, \mathfrak{m})\) be a quasi-local ring and \(f : R^n \to M \) a surjective \(R \)-module homomorphism. Prove that \(n = \mu_R(M) \) if and only if \(\ker f \subseteq \mathfrak{m} R^n \).

Proof: First we establish the following general result: Let \(f : M \to N \) be a surjective \(R \)-module homomorphism and \(I \) an ideal of \(R \). Then the natural induced map \(\bar{f} : M/IM \to N/IN \) is an isomorphism if and only if \(\ker f \subseteq IM \).

\[\Rightarrow : \text{As } f : M \to N \text{ is surjective, we know that } \bar{f} \text{ is. Also, let } m \in M \text{ such that } f(m) = 0. \text{ Then } f(\bar{m}) = f(m) + IN = 0, \text{ so that since } f \text{ is 1-1, we have that } \bar{m} = 0, \text{ thus } m \in IM. \]

\[\leftarrow : \text{Let } \bar{m} = m + IM \text{ be such that } f(\bar{m}) = 0. \text{ Then } f(m) \in IN. \text{ Hence we have that } f(m) = \sum i_j m_j \text{ for some } i_j \in I \text{ and } n_j \in N. \text{ As } f \text{ is surjective for each } n_j \text{ there exists } m_j \text{ such that } f(m_j) = n_j. \text{ So, } f(m) = \sum i_j f(m_j) = f(\sum i_j m_j). \text{ So, as } f \text{ is a homomorphism, we have that } f(m - \sum i_j m_j) = 0, \text{ so that } m - \sum i_j m_j \in ker f. \text{ Therefore by assumption, we have that } m - \sum i_j m_j \in IM, \text{ so that } m \in IM. \text{ Therefore, } \bar{m} = 0, \text{ so that } f \text{ is injective. } f \text{ is clearly surjective, as } f : M \to N \text{ is surjective. This completes the proof of the claim.} \]

So, applying this to the situation above, we have that if \(f : R^n \to M \) is a surjective \(R \)-module homomorphism, then \(\bar{f} : (R/\mathfrak{m})^n \to M/\mathfrak{m} M \) is an isomorphism if and only if \(\ker f \subseteq \mathfrak{m} R^n \). Note that in this case, we have that \(\bar{f} \) is a map of \(R/\mathfrak{m} \) vector spaces so that the images of the generators of \((R/\mathfrak{m})^n\) are generators for \(M/\mathfrak{m} M \), say \(\{\bar{x}_1, \ldots, \bar{x}_n\} \). Thus, by NAK, \(x_1, \ldots, x_n \) generate \(M \), so that \(\mu_R(M) = n \).

6. Let \(E/F \) be a field extension and \(S = \{x_1, x_2, x_3\} \) a subset of \(E \) which is algebraically independent over \(F \). Prove that \(T = \{x_1 + x_2, x_1 x_2 + x_1 x_3 + x_2 x_3, x_1 x_2 x_3\} \) is algebraically independent over \(F \).

Proof: Note that \(T \) consists of precisely the elementary symmetric polynomials over the algebraically independent set \(\{x_1, x_2, x_3\} \). Thus by a theorem in class, we have that \(F(S)/F(T) \) is Galois, and hence algebraic. Also, note that we have that \(\text{trdeg}(F(S)/F) = 3 \), so that \(\text{trdeg}(F(T)/F) \) is at most 3. Furthermore, we know that \(\text{trdeg}(F(S)/F) = \text{trdeg}(F(S)/F(T) + \text{trdeg}(F(T)/F) = \text{trdeg}(F(T)/F) \) as \(\text{trdeg}(F(S)/F(T) = 0 \) because \(F(S)/F(T) \) is algebraic. So, \(\text{trdeg}(F(T)/F) = 3 \). By a HW problem, since \(F(S) \) is algebraic over \(F(T) \), \(T \) contains a transcendence base for \(F(S)/F \). Therefore, \(T \) must be a transcendence base for \(F(S)/F \) hence algebraically independent.

7. Let \(R \) be a Noetherian domain in which every ideal is projective. Prove that \(\dim R \leq 1 \).

Proof: Let \(I \) be an ideal of \(R \). Then \(I \) is a finitely generated projective \(R \)-module by assumption, and since \(R \) is Noetherian. Also, for all \(p \in \text{Spec } R \), \(I_p \) is a free \(R_p \)-module because f.g. projectives are locally free. Note that all ideals of \(R_p \) are of the form \(I_p \) for some ideal \(I \) of \(R \). So, we have that
every ideal of R_p is free. By a HW problem, we have that every ideal is principally generated by a nonzerodivisor, so that R_p is a PID for all $p \in \text{Spec } R$. I claim that if R is a PID then $\dim R \leq 1$. Indeed, suppose there existed a chain of proper prime ideals $(0) \subsetneq (f_1) \subsetneq (f_2)$. Then as $f_1 \in (f_2)$ there exists an $r \in R$ such that $rf_2 = f_1$. However, as (f_1) is prime, $r \in (f_1)$, so there exists $s \in R$ such that $sf_1 = r$. So we have that $sf_1f_2 = f_1 \Rightarrow f_1(sf_2 - 1) = 0 \Rightarrow sf_2 = 1 \Rightarrow f_2$ is a unit, a contradiction to the fact that (f_2) was a prime ideal. So, $\dim R_p \leq 1$ for all $p \in \text{Spec } R$. Note that $\dim R$ may be defined as:

$$\dim R = \sup \{ \dim R_p \mid p \in \text{Spec } R \}.$$

To see this, note that the dimension of a ring R is the sup of the lengths of chains of prime ideals of R. Also, the prime ideals of R_p are just the prime ideals contained in p. So, taking the dimension of the localizations over all prime ideals is the same as looking for the longest chain of prime ideals in the original ring. Therefore, as $\sup \{ \dim R_p \mid p \in \text{Spec } R \} \leq 1$ we have that $\dim R \leq 1$ as desired.