Sylow’s Theorem I: If p^n divides the order of G with p a prime, then G has a subgroup of order p^n.

Corollary: Cauchy’s Theorem: Suppose p divides the order of G. Then G has an element of order p.

Definition: Suppose p^n divides the order of G, but p^{n+1} does not. Then a subgroup of G of order p^n is called a Sylow p-subgroup of G.

Recall: In the following notes, let H, K be finite subgroups of a group G, and define $HK := \{hk | h \in H, k \in K\}$.

1. $|HK| = \frac{|H||K|}{|H \cap K|}$

2. HK is a subgroup of G if $HK = KH$

3. If H or K is normal, then HK is normal.

4. If $H \subseteq N_G(K)$, then HK is a subgroup.

Definition: Suppose X is a G-set, $x \in X$ is called a fixed point of G if $G_x = G$, or equivalently, $Gx = \{x\}$.

Notation: Suppose p divides the order of G. Then $\text{Syl}_p(G) := \{\text{all Sylow } p\text{-subgroups}\}$ and $n_p := |\text{Syl}_p(G)|$.

Remark: If H is a subgroup of order n and $x \in G$ then xHx^{-1} is also a subgroup of order n, and xHx^{-1} is called a conjugate of H. Therefore, any conjugate of a Sylow p-subgroup is a Sylow p-subgroup. In addition, the number of conjugates of a subgroup H is $[G : N_G(H)]$.

Lemma 1: Let H be a p-subgroup of G and $P \in \text{Syl}_p(G)$ and suppose $H \subseteq N_G(H)$. Then $H \subseteq P$.

Proof: By one of the remarks, HP is a subgroup of G, and then

$$|HP| = \frac{|H||P|}{|H \cap P|} = |P| \cdot \left(\frac{|H|}{|H \cap P|}\right)$$

$$= |P| \cdot p^\alpha = p^{n+\alpha}$$

Therefore, $\alpha = 0$, since $P \subseteq HP$ but P is a sylow p-subgroup. So, this implies $H = H \cap P \subseteq P$.

Lemma 2: Let X be a G-set and suppose G is a p-group. Let n be the number of fixed points of G. Then $|X| \equiv n \pmod p$.

Proof:

$$|X| = \sum |Gx|$$
\[= n + \sum |Gx| \]

And since \(|Gx|\) divides \(|G|\), we know that

\[= n + \sum p^{\alpha_i} \]

For some \(\alpha_i > 0\). Now modding out by \(p\), we get

\[|X| \equiv n \pmod{p}. \]

Sylow’s Second Theorem: Suppose for the following that \(p\) divides the order of \(G\). Then

1. Any \(p\)-subgroup is contained in a Sylow \(p\)-subgroup.
2. All Sylow \(p\)-subgroups are conjugate.
3. \(n_p = [G : N_G(P)]\) for any \(P \in \text{Syl}_p(G)\), and in particular \(n_p\) divides \(|G|/|P| = \frac{|G|}{p^n}\).
4. \(n_p \equiv 1 \pmod{p}\).

Proof:

1. Let \(P \in \text{Syl}_p(G)\) and let \(X = \{xPx^{-1} | x \in G\}\). Then \(|X| = [G : N_G(P)]\). Now let \(H\) be any \(p\)-subgroup of \(G\), and let \(H\) act on \(X\) by conjugation (i.e. if \(Q \in X\) then \(h \cdot Q = hQh^{-1}\). Note that \(p \nmid |X|\), since \(P \subseteq N_G(X)\). By lemma 2, we have \(|X| \equiv \text{fixed points of } H \pmod{p}\). Since \(|X| \not\equiv 0 \pmod{p}\), \(\exists\) a fixed point of \(H\) in \(X\), say \(Q\). So, we know \(hQh^{-1} = Q \forall h \in H\). But \(Q \in X \subseteq \text{Syl}_p(G)\). The above implies that \(H \subseteq N_G(Q)\) and by lemma 1, we have \(H \subseteq Q\).

2. Let \(P' \in \text{Syl}_p(G)\). By replacing \(H\) by \(P'\) in the previous argument, we get \(P' \subseteq Q = xPx^{-1}\) (since \(xPx^{-1}\) has the same order of \(Q\)). Hence any two Sylow \(p\)-subgroups are conjugates, and thus \(X = \text{Syl}_p(G)\).

4. Choose \(P \in \text{Syl}_p(G)\) and \(X = \{xPx^{-1} | x \in G\} = \text{Syl}_p(G)\). Let \(P\) act on \(X\) by conjugation. By the same argument as in 1, there exists a fixed point of \(P\) in \(X\), say \(Q\). This means that \(yQy^{-1} = Q \forall y \in P\), thus \(P \subseteq N_G(Q)\) which implies \(P \subseteq Q\) which also implies \(P = Q\). Hence, there is only one fixed point of \(P\) in \(X\). By lemma 2, \(n_p = |X| \equiv \text{number of fixed points} = 1 \pmod{p}\).

Corollary: Let \(P \in \text{Syl}_p(G)\). Then \(P < G \iff P\) is the unique sylow \(p\)-subgroup of \(G\).