Let G be a group, H a subgroup, and let G act on G/H via $g \cdot xH := (gx)H$ where juxtaposition is the group operation. Note that $g \in G_xH \iff gxH = xH \iff x^{-1}gx \in H \iff g \in xHx^{-1}$. So we have that the stabilizer, G_xH, is xHx^{-1}.

Remember that every group action induces a group homomorphism from the group to the permutations of the set, so we have:

$$\phi : G \to \text{Perm}(G/H).$$

The kernel of ϕ is $\ker \phi = \bigcap_{x \in G} xHx^{-1}$. This action is faithful $\iff \bigcap_{x \in G} xHx^{-1} = \{1\}$.

Remarks:

1. So if H is normal, the action is faithful $\iff H = \{1\}$, since $\ker(\phi) = H$ for H normal. In particular ϕ is injective because ϕ becomes $G \to \text{Perm}(G)$. Therefore G is isomorphic to a subgroup of S_n. Hence, if $|G| = n$, then G is isomorphic to a subgroup of S_n.

2. Since $\bigcap_{x \in G} xHx^{-1} = \ker \phi$, we see that $\bigcap_{x \in G} xHx^{-1} \triangleleft G$.

Exercise: Show that $\bigcap_{x \in G} xHx^{-1}$ is the largest normal subgroup contained in H.

Proposition: Let p be the smallest prime dividing $|G|$. Suppose \exists a subgroup H with $[G : H] = p$. Then H must be normal.

Proof: So we have the Cayley map:

$$\phi : G \to \text{Perm}(G/H) \cong S_p$$

Let $K = \ker \phi \subseteq H$. So we then have the induced map

$$\tilde{\phi} : G/K \to S_p \text{ is injective}$$

$$gK \mapsto \phi(g)$$

So, since $G/K \cong$ to some subgroup of S_n, $|G/K|$ divides $|S_p|$ by Lagrange's theorem. Hence $|G/K|$ divides $p!$. Therefore,

$$[G : K] = [G : H][H : K]$$

where we have $[G : H]$ by assumption. Thus, $[H : K]$ divides $(p - 1)!$, but it also divides $|G|$. But p was the smallest prime dividing $|G|$ by assumption, so we have that $[H : K] = 1$. Thus, $H = K \triangleleft G$.

Corollary: If $[G : H] = 2$ then $H \triangleleft G$.

Back to Conjugation Example of Group Actions: Let G act on itself via $g \cdot x = gxg^{-1}$. So, the orbit $Gx = \{gxg^{-1} | g \in G\}$. These orbits are called **conjugacy classes** here. Notice that since the...
orbits partition the group, our conjugacy classes partition \(G \).

Also notice that
\[
g \in G_x \iff gxg^{-1} = x \\
\iff gx = xg \\
\iff g \in C_G(x) = \{ g \in G | gx = xg \}
\]
(where \(C_G(x) \) is the centralizer of \(x \) in \(G \)). Recall from previous lecture that \(|G_x| = [G : G_x] = [G : C_G(x)] \) in this case.

Hence we have
\[
|G_x| = 1 \iff G = C_G(x) \\
\iff x \in Z(G) = \{ g \in G | ga = ag \forall a \in G \}
\]
(where \(Z(G) \) denotes the center of the group.)

So we may refine our previous counting formula a little more to give better insight into the problem by removing all those orbits of the elements that are in the center of the group.

\[
|G| = \sum_x [G : C_G(x)] \\
= |Z(G)| + \sum_x [G : C_G(x)]
\]

where \(x \) runs over all distinct conjugacy classes in the first sum and all distinct conjugacy classes having 2 or more elements in the second sum. The above is known as the class formula.

Definition: Let \(p \) be a prime. A group of order \(p^n \) for some \(n \geq 1 \) is called a \(p \)-group.

Proposition: If \(G \) is a \(p \)-group, then \(Z(G) \neq \{1\} \).

Proof: If \(Z(G) = \{1\} \), then \(|G| = p^n = 1 + \sum_i p^{\alpha_i} \) where \(\alpha_i \geq 1 \) because all orders of subgroups of \(G \) divide the order of \(G \) and \(C_G(x) \) is a subgroup for all \(x \in G \), so \([G : C_G(x)] = p^\alpha \) some \(\alpha \geq 1 \). If we mod out by \(p \), we get that zero is equivalent to 1 mod \(p \), a contradiction.

Exercise: If \(G/Z(G) \) is cyclic, then \(G \) is abelian.

Corollary: If \(|G| = p^2 \), \(p \) a prime, then \(G \) is abelian.

Proof: If \(Z(G) \neq G \) then \(|Z(G)| = p \) by Lagrange’s, but that makes \(|G/Z(G)| = p \). Therefore \(G/Z(G) \) is cyclic, which in turn implies \(G \) is abelian, a contradiction.

Lemma: Let \(G \) be a finite abelian group and \(p \) a prime dividing \(|G| \). Then \(G \) has an element of order \(p \).

Proof: Induct on \(|G| \). If \(|G| = p \), then \(G \) is cyclic. Suppose \(|G| > p \). Let \(x \in G, x \neq 1 \). We shall break this problem up into two cases:

1. If \(p \mid o(x) = n \), then \(o(x^{n/p}) = p \) and we are done.
2. If \(p \nmid o(x) = n \), then \(|G/\langle x \rangle| = \frac{|G|}{n} < |G| \). Also, \(p \) divides \(|G/\langle x \rangle| \) since \(p \nmid n \). By our inductive hypothesis, \(|G/\langle x \rangle| \) has an element \(\bar{y} = y\langle x \rangle \) of order \(p \). Therefore we have \(o(\bar{y})o(y) = m \). So, \(o(y^{m/p}) = p \).

Some notes on normal subgroups:

1. Subgroups of \(G/H \) are of the form \(L/H \) where \(H \subseteq L \subseteq G \).
2. \(L/H \triangleleft G/H \iff L \triangleleft G \)
3. If \(L/H \) is normal, then \((G/L)/(L/H) \cong G/H \).

Sylow’s First Theorem: Let \(G \) be a finite group and suppose \(p^\alpha \) divides \(|G| \) for some \(\alpha \geq 0 \). Then \(G \) has a subgroup of order \(p^\alpha \). So this subgroup is then a \(p \)-group.

Proof: If \(|G| = p^\alpha \), we are done, and assume that \(|G| > p^\alpha \). We can create the following cases:

1. Suppose \(p \) divides \(|Z(G)| \). The center is abelian, so by the previous lemma we know \(\exists \ x \in Z(G) \mid o(x) = p \). Let \(H = \langle x \rangle x \). \(H \) is then normal in \(G \) since \(x \in Z(G) \). Then \(G/H \) is a group, and \(|G/H| = \frac{|G|}{p} < |G| \). Therefore \(p^{\alpha-1} \) divides \(|G/H| \) because \(p^\alpha \) divided \(|G| \) and \(|H| = p \). Hence, by induction, \(G/H \) has a subgroup of order \(p^{\alpha-1} \). So let \(L \) be a subgroup of \(G \) containing \(H \) such that \(|L/H| = p^{\alpha-1} \). Therefore, \(|L/H| = |L|/|H| \) which implies \(|L| = |H| \cdot p^{\alpha-1} = p^\alpha \).
2. Suppose \(p \nmid |Z(G)| \). Then by the class formula:

\[
|G| = |Z(G)| + \sum_x [G : C_G(x)]
\]

we must have that \(p \nmid [G : C_G(x)] \ \forall x \notin Z(G) \) by easily reducing mod \(p \) and looking at the residues. Therefore, \(p^\alpha \) does divide \(|C_G(x)| < |G| \) (why?), and by induction, \(C_G(x) \) has a subgroup of order \(p^\alpha \), so \(G \) does as well.