Example/Remark: Let \(f(x) \in K[x] \) be an irreducible polynomial. We know that \(f \) has multiple roots \(\iff (f, f') = 1 \iff f \nmid f' \), as \(f \) is irreducible \(\iff f' = 0 \). So, if \(\text{Char } K = 0 \) then every irreducible polynomial has only simple roots. If \(\text{Char } K = p > 0 \), then there may exist \(f(x) \) irreducible such that \(f'(x) = 0 \).

Indeed, assume that \(K^p \neq K \) (i.e. \(K \) is not perfect), and take \(a \in K^p \setminus K \). Then \(x^p - a \) is irreducible and has multiple roots. To see that \(x^p - a \) is irreducible, then there would exist \(g \) irreducible in \(K[x] \) such that \(\deg g < \deg f = p \) and \(g \mid f \). Note that \(g' \neq 0 \) as \(g \) leading term of the polynomial is not a power of \(p \). If \(g = x^i + \cdots + \beta_1 x + \beta_0 \) where \(i < p \), then \(g' = i x^{i-1} + \cdots + \beta_1 \neq 0 \) so \(g \) has no multiple roots. Note that this is true for every irreducible factor of \(f \). However, \(f \) itself has multiple roots, and hence \(f = (x - b)^p \) (since different irreducible polynomials do not share roots???) where \(b^p = a \in K^p \), a contradiction.

Definition: An irreducible polynomial is called separable if it has no multiple roots. (i.e. \(\gcd(f, f') = 1 \)). This is the case \(\iff f \) has precisely as many roots as its degree. The example show that in characteristic zero, every polynomial is separable but in \(\text{Char } p > 0 \), there exist irreducible polynomials \(f \) that have a unique root.

Remark: Let \(\alpha \) be a root of an irreducible polynomial \(f \in K[x] \). Then there is an embedding

\[
K(\alpha) \to \bar{K}
\]

that fixes \(K \). For each root of \(f \), we get such an embedding, and distinct roots give distinct embeddings. So, the number of embeddings is the number of distinct roots.

Proposition: Let \(K \subseteq F \subseteq E \) be a sequence of algebraic field extensions, and let \(\sigma, \tau : F \to \bar{F} \) be embeddings over \(K \). Set \(S_\sigma = \{ \pi : E \to \bar{F} \mid \pi|_F = \sigma \} \) and \(S_\tau = \{ \pi : E \to \bar{F} \mid \pi|_F = \tau \} \). Then the sets \(S_\sigma \) and \(S_\tau \) have the same cardinality.

Proof: Since \(\bar{F} \) is algebraic over \(\sigma(F) \), there exists a \(\lambda : \bar{F} \to \bar{F} \) so that \(\lambda|_{\sigma(F)} = \tau \sigma^{-1} \) by the lifting theorem we did a while ago. So, for every \(\chi \in S_\sigma \), consider the composition \(\lambda \chi : E \to \bar{F} \). Then for \(a \in A \), note that

\[
\lambda \chi(a) = \lambda \sigma(a) = (\tau \sigma^{-1})(\sigma(a)) = \tau(a)
\]

so that \(\lambda \chi \in S_\tau \). Switching \(\sigma \) and \(\tau \) and using the map \(\lambda^{-1} \) we get a similar correspondence in which the composition is the identity on both sets. Therefore \(|S_\sigma| = |S_\tau| \).

Definition: The cardinality of the set of extensions of any embedding \(\sigma : F \to \bar{F} \) is called the separability degree of \(E/F \) and is denoted \([E : F]_s \). This is well defined in view of the above proposition.

Theorem: Let \(K \subseteq F \subseteq E \) be algebraic. Then \([E : K]_s = [E : F]_s [F : K]_s \).

Proof: Let \(\{ \sigma_i : F \to \bar{E} \} \) be the set of all embeddings of \(F \) into \(\bar{E}(= \bar{F}) \) fixing \(K \). For each \(i \in I \), choose, by the proposition, \([E : F]_s \) extensions \(\tau_{ij} : E \to \bar{E} \) such that \(\tau_{ij}|_F = \sigma_i \). In this way, we get \([E : F]_s [F : K]_s \) distinct embeddings of \(E/K \). We have the picture:
Since for every embedding $\tau : E \to \bar{E}$ over K, we have that $\tau|_F = \sigma_i$ for some i, we have obtained all embeddings of $E \to \bar{E}$ over K.

Lemma: If $F = K(\alpha)$ is and algebraic extension, then $[F : K]_s = \text{number of distinct roots of } \text{Irr}(\alpha, F) \leq [F : K]$. For the proof, this is the initial example that we computed.

Proposition: For every finite extension $K \subset F$ there is an inequality $[F : K]_s \leq [F : K]$.
Proof: F is finitely generated by algebraic elements, so $F = K(\alpha_1, \ldots, \alpha_n)$. Then we have a chain of field extensions

$$K \subseteq K(\alpha_1) = K_1 \subseteq K(\alpha_1, \alpha_2) = K_2 \subseteq \cdots \subseteq K(\alpha_1, \ldots, \alpha_n) = K_n = F$$

So we have $[K_{i+1} : K_i]_s \leq [K_{i+1} : K]$ and multiplying these inequalities we get $[F : K]_s \leq [F : K]$.

Definition: An element $\alpha \in F$ is called separable over K if its irreducible polynomial over K is separable. An algebraic extension F/K is called separable if every element $\alpha \in F$ is separable over K.

Remark: Let $K \subseteq F \subseteq E$, and let $\alpha \in E$. Suppose that α is separable over K. Then α is separable over F. Indeed, we know that $\text{Irr}(\alpha, K)$ has distinct roots. However, $\text{Irr}(\alpha, F) | \text{Irr}(\alpha, K)$ so $\text{Irr}(\alpha, F)$ has distinct roots.

Theorem: If F/K is an algebraic extension, then it is separable if and onyl if $[F : K]_s = [F : K]$.
Proof: Induct on $[E : F]$. If $[E : F] = 1$ then $E = F$ hence E/F is separable. If $[E : F] > 1$, pick $\alpha \in E \setminus F$, and consider the diagram

$$E$$
$$\downarrow$$
$$F(\alpha)$$
$$\downarrow^{>1}$$
$$F$$

As α is separable over F and since $\alpha \in E \setminus F$, we have that $[F(\alpha) : F]_s = [F(\alpha) : F] > 1$. By induction, we have that $[E : F(\alpha)]_s = [E : F(\alpha)]$. Therefore, using the multiplicative law for separable extensions, we have that $[E : F]$ is separable. For the reverse direction, note that $[E : F]_s = [E : F]$ means that $[F(\alpha) : F]_s = [F(\alpha) : F]$ for all $\alpha \in E$ and hence α is separable for all $\alpha \in E$.

Corollary: Let $E = F(\alpha_1, \cdots, \alpha_n)$ be an algebraic extension. Then E/F is separable \iff each α_i is separable over F.

2
Proof: The forward direction is trivial. For the reverse, consider the chain of fields:

\[F \subseteq F(\alpha_1) = F_1 \subseteq F(\alpha_1, \alpha_2) = F_2 \subseteq \cdots \subseteq F(\alpha_1, \ldots, \alpha_n) = F_n = E \]

Then consider also \(F_i/F_{i-1} \). As \(\alpha_i \) is separable over \(F \), \(\alpha_i \) is separable over \(F_{i-1} \). Therefore, we have that \([F_i : F_{i-1}]_s = [F_i : F_{i-1}] \). Therefore, by multiplicativity of the separability degree, we get that \([E : F]_s = [E : F] \).

Theorem: Let \(E/F \) be an algebraic field extension. If \(\text{Char} \ F = 0 \) then \(E/F \) is separable.

Proof: Let \(\alpha \in E \) and \(f(x) = \text{Irr}(\alpha, F) \). Then \(\gcd(f, f') = 1 \) and hence \(f(x) \) has distinct roots, so \(\alpha \) is separable.

Definition: A field \(F \) is called **perfect** if every algebraic extension of \(F \) is separable (hence if \(\text{Char} \ F = 0 \) then \(F \) is perfect).

Theorem: Let \(F \) be a field of characteristic \(p \) \(> 0 \). Then \(F \) is perfect \(\iff F = F^p = \{ \alpha^p \mid \alpha \in F \} \) (i.e. every element of \(F \) has a \(p \)th root). Note also that \(F^p \) is a subfield of \(F \) in this case.

Proof: " \(\Rightarrow \) ": Let \(\alpha \in F \). Consider \(f(x) = x^p - \alpha \in F[x] \). Let \(E \) be a splitting field for \(f \) and let \(\alpha \) be a root of \(f(x) \) in \(E \). So \(\alpha^p = \alpha \), so we wish to show that \(\alpha \in F \). In \(E[x], f(x) = x^p - \alpha^p = (x - \alpha)^p \). Let \(h(x) = \text{Irr}(\alpha, F) \). Then \(h(x) \mid f(x) \). So, in \(E[x] \), we have that \(h(x) \mid (x - \alpha)^p \). But \(E/F \) is separable, so \(\alpha \) is separable over \(F \), hence \(h(x) \) has no multiple roots. Therefore \(h(x) = (x - \alpha) \). Therefore \(\alpha \in F \) and we have that \(\alpha \) is a \(p \)th power of \(\alpha \).

" \(\Leftarrow \) ": Let \(E/F \) be an algebraic extension. Let \(\alpha \in E \) and suppose \(\alpha \) is not separable over \(F \). Let \(f(x) = \text{Irr}(\alpha, F) \). Then \(f(x) \) has multiple roots and by a previous result, we have that \(f(x) = g(x^p) \) for some \(g \in F[x] \), say \(g(x) = a_0 x^p + \cdots + a_1 x + a_0 \in F[x] \). For each \(i \), let \(a_i = b_i^p \), since \(F = F^p \). Then we have that \(f(x) = g(x^p) = b_n^p (x^n)^p + \cdots + b_1 x^p + b_0^p = (b_n x^n + \cdots + b_1 x + b_0)^p \), a contradiction to the fact that \(f(x) \) was irreducible. Therefore, \(\alpha \) is separable.

Corollary: Every finite field is perfect.

Proof: Let \(F \) be a finite field, \(\text{Char} F = p \). Consider the Frobenius endomorphism

\[\phi : F \to F \]

\[a \to a^p \]

Note that \(\ker \phi = \{0\} \), so as \(F \) is finite, \(\phi \) is surjective as well, so \(F = F^p \). Therefore, \(F \) is perfect.

Example: Let \(t \) be an indeterminant over \(\mathbb{Z}_p \). Let \(F = \mathbb{Z}_p(t) \). Then \(F \neq F^p \) as \(t \) is not a \(p \)th power. Therefore, \(F \) is not perfect. An inseparable element would be \(\alpha \) where \(\alpha \) is a root of \(f(x) = x^p - t \).

Major Proposition on Separability: Let \(K \) be a field of \(\text{Char} \ K, \alpha \in K \).

1. \(\alpha \) is separable over \(K \iff K(\alpha) = K(\alpha^p) \).
2. If \(\alpha \) is inseparable over \(K \), then \([K(\alpha) : K(\alpha^p)] = p \) and \(\text{Irr}(\alpha, K(\alpha^p)) = x^p - \alpha^p \).
3. \([K(\alpha) : K]_s = [K(\alpha^p) : K]_s \) for all \(n \geq 1 \).
4. \(\alpha^{p^n} \) is separable over \(K \) for all large \(n \).
5. \([K(\alpha) : K] = p^n [K(\alpha) : K]_s \) where \(n \) is the largest nonnegative integer such that \(\alpha^{p^n} \) is separable.
Proof:

1. \Rightarrow: Suppose α is separable over K. So α is separable over $K(\alpha^p)$. Let $f(x) = \text{Irr}(\alpha, K(\alpha^p))$. Then $f(x) | x^p - \alpha^p \in K(\alpha^p)[x]$. Therefore, in $K(\alpha)[x]$, $f(x) | (x - \alpha)^p$. As $f(x)$ has no multiple roots $f(x) = x - \alpha$. Therefore $\alpha \in K(\alpha^p)$ and hence $K(\alpha) = K(\alpha^p)$.

\Leftarrow: Suppose $K(\alpha) = K(\alpha^p)$. Let $h(x) = \text{Irr}(\alpha, K)$. Suppose $h(x)$ has multiple roots. Then $h(x) = g(x^p)$ for some $g(x) \in K[x]$. But $h(\alpha) = g(\alpha^p) = 0$. Thus, $[\alpha^p : K] \leq \deg g(x) < \deg h$. On the other hand, $[K(\alpha^p) : K] = [\alpha : K] = \deg h$, a contradiction. Thus $h(x)$ does not have multiple roots.

2. Let $f(x) = \text{Irr}(\alpha, K(\alpha^p))$. We know $f(x) | x^p - \alpha^p = (x - \alpha)^p$. Therefore, we have that $f(x) = (x - \alpha)^m$ for some $1 \leq m \leq p$. Note that $m > 1$ as α is inseparable. So, expanding $f(x)$ gives $f(x) = x^m + (m\alpha)x^{m-1} + \cdots$, so $m\alpha \in K(\alpha^p) \Rightarrow \alpha \in K(\alpha^p)$ unless $m = p$, so we must have that $m = p$, again, since α is inseparable. Therefore, $\text{Irr}(\alpha, K(\alpha^p)) = x^p - \alpha^p$ and hence $[K(\alpha) : K(\alpha^p)] = p$.

3. $[K(\alpha) : K(\alpha^p)]_s = [K(\alpha^p)(\alpha) : K(\alpha^p)]_s$ is the number of distinct roots of $\text{Irr}(\alpha, K(\alpha^p)) = 1$ since the only root of $\text{Irr}(\alpha, K(\alpha^p))$ is α. So, as $[\cdot, \cdot]_s$ is multiplicative, $[K(\alpha) : K]_s = [K(\alpha^p) : K]_s$ and by induction we see that $[K(\alpha) : K]_s = [K(\alpha^p) : K]_s$ for all $n \geq 1$.

4. Consider the chain of fields

$$K(\alpha) \subseteq K(\alpha^p) \subseteq K(\alpha^{p^2}) \subseteq \cdots \subseteq K$$

This is a descending chain of finite dimensional vector K vector spaces (as α is algebraic over K, $[K(\alpha) : K] < \infty$). Therefore, for some n, we have that $K(\alpha^{p^n}) = K(\alpha^{p^{n+1}})$. Therefore, α^{p^n} is separable over K. Thus $K(\alpha^{p^n})/K$ is separable and hence α^{p^l} is separable for all $l \geq n$.

5. By the above propositions, we have the following tower of fields and their degrees

$$\begin{array}{c}
K(\alpha) \\
\text{p} \\
K(\alpha^p) \\
\text{p} \\
\vdots \\
\text{p} \\
K(\alpha^{p^n}) \\
\text{sep} \\
K
\end{array}$$

Therefore, we have that $[K(\alpha) : K] = p^n[K(\alpha^{p^n}) : K] = p^n[K(\alpha^{p^n}) : K]_s = p^n[K(\alpha) : K]_s$, as desired.
Theorem: Let $E = K(\alpha_1, \ldots, \alpha_n)$ be a finite extension. Then $[E : K] = p^m[E : K]_s$ for some $m \geq 0$.

Proof: Prove by induction on n. For the case $n = 1$, this is part 5 of the above major proposition. For $n > 1$, let $F = K(\alpha_1, \ldots, \alpha_{n-1})$. By induction, $[F : K] = p^l[F : K]_s$. As $E = F(\alpha_n)$, $[E : F] = p^k[E : F]_s$, and hence $[E : K] = p^{k+l}[E : K]_s$.

Corollary: If $[E : K] < \infty$ then $[E : K]_s \mid [E : K]$.

Definition: Let E/K be a finite field extension. Then define the inseparable degree of E/K by $[E : K]_i = [E : K]_s$. By the theorem, $[E : K]_i = 1$ or a power of the characteristic. As a remark, we also have that the inseparability degree is multiplicative since both the usual degree and the separable degree are multiplicative.

Definition: Let K be a field of characteristic p and α an algebraic element of \bar{K}. Then α is purely inseparable over K if $\alpha^{p^n} \in K$ for some $n \geq 0$. An algebraic extension E/K is called purely inseparable if each $\alpha \in E$ is purely inseparable.

Lemma: An element $\alpha \in \bar{K}$ is purely inseparable over $K \iff [K(\alpha) : K] = [K(\alpha) : K]_i \iff [K(\alpha) : K]_s = 1$.

Proof: Suppose that α is purely inseparable over K. Then $\alpha^{p^n} \in K$ for some n. Then $[K(\alpha) : K]_s = [K(\alpha^{p^n}) : K]_s = [K : K]_s = 1$, by part 3) of the proposition. Suppose that $[K(\alpha) : K]_s = 1$. By part 4), α^{p^n} is separable over K for some $n \geq 0$. Then $[K(\alpha^{p^n}) : K] = [K(\alpha^{p^n}) : K]_s = [K(\alpha) : K]_s = 1$ and hence $\alpha^{p^n} \in K$.

Theorem: Let E/K be a finite extension. Write $E = K(\alpha_1, \ldots, \alpha_n)$. Then TFAE:

1. E/K is purely inseparable.
2. Each α_i is purely inseparable.
3. $[E : K]_s = 1$
4. $[E : K]_i = [E : K]$

Proof: Induction on n (Exercise).