Research Statement

Preliminaries

My primary research interests are in geometric inverse semigroup theory and its connections with other fields of mathematics.

A semigroup M is called an inverse semigroup if for every element $a \in M$, there exists a unique element $b \in M$ such that $a = aba$ and $b = bab$. Let A and B be subsets of a nonempty set X with same cardinality. Then a bijective map $\phi : A \rightarrow B$ is called a partial one to one map of X. If we consider the set I_X of all partial one to one maps of a nonempty set X, then I_X forms an inverse semigroup under the binary operation of composition of partial functions. In the literature, this inverse semigroup is known as the Symmetric Inverse Monoid on the set X. One of the earliest result proved about inverse semigroups is the Wagner-Preston theorem. This theorem is analogous to the Cayley’s theorem for groups. The Wagner-Preston theorem says that every inverse semigroup embeds in a suitable symmetric inverse monoid. The basic details about the structure of inverse semigroups and their connection with other fields can be found in [8].

A congruence on a semigroup S is an equivalence relation ρ which is compatible with the semigroup operation: i.e., if apb then $(ac)\rho(bc)$ and $(ca)\rho(cb)$ for all $a, b, c \in S$. The congruence class of a is denoted by $a\rho$. The product of any two congruence class ap and bp is given by $(ap)(bp) = (ab)\rho$ and forms the quotient semigroup S/ρ. If X is an alphabet and X^{-1} denotes a disjoint set of inverses of elements of X. Then the Vagner congruence ρ is the congruence generated by

$$\{(u, uu^{-1}u), (vu^{-1}vv, vv^{-1}uu^{-1})|u, v \in (X \cup X^{-1})^*\}.$$

The semigroup $(X \cup X^{-1})^*/\rho$ is called the free inverse monoid on X and denoted by $FIM(X)$. If $R \subset (X \cup X^{-1}) \times (X \cup X^{-1})$ and τ is the congruence generated by $\rho \cup R$, where ρ is the Vagner congruence, then $M = Inv\langle X|R \rangle := (X \cup X^{-1})^*/\tau$ is the inverse semigroup presented by the set X of generators and the R of relations.

If $R \subset X^+ \times X^+$, then the inverse semigroup given $M = Inv\langle X|R \rangle$ is called a positively presented inverse semigroup. My research focuses on the positively presented inverse semigroups.

The word problem for the inverse semigroup $M = Inv\langle X|R \rangle$ is the question of whether there is an algorithm which, given any two words $w_1, w_2 \in (X \cup X^{-1})^*$, will determine whether $w_1 = w_2$ in M.

In order to study the word problem for inverse semigroups, J. B. Stephen introduce the notion of Schützenberger graph in [12]. If $M = Inv\langle X|R \rangle$, then the Cayley graph of M is denoted by $\Gamma(M, X)$. The vertices of this graph are the elements of M and there is an edge labeled by $x \in X \cup X^{-1}$ starting from m and ending at mx for each $m \in M$. The Cayley graph $\Gamma(M, X)$ is not strongly connected in general(unless M happens to be a group), because there may not be an edge labeled by x^{-1} starting from mx and ending at m. For example, if M is an inverse semigroup that contains zero. Then there will be an edge starting from every nonzero element of M and ending at zero, but there will be no edge starting from zero and ending at a vertex that is labeled by a nonzero element of M. So unlike the group case, the Cayley graph of an inverse semigroup is not a geodesic metric space relative to the a word metric.

To overcome this difficulty, we only consider the strongly connected components of $\Gamma(M, X)$. A strongly connected component of the Cayley graph $\Gamma(M, X)$ corresponds to an R–class of M. These strongly connected components are called the Schützenberger graphs of M. In more detail, for each word $w \in (X \cup X^{-1})^*$, we denote by $\Sigma(M, X, w)$ the graph with set $R_w = \{m \in M : mnw^{-1} = ww^{-1}inM\}$ of vertices, and with an edge labeled by $x \in (X \cup X^{-1}$ from m to mx if $m, mx \in R_w$. It is easy to see that if x labels an edge from m to mx in $\Sigma(M, X, w)$ then x^{-1}
labels an edge from mx to m in this graph. Thus, the Schützenberger graphs $ST(M,X,w)$ are geodesic metric spaces with respect to the word metric.

It is useful to consider the **Schützenberger automaton** $A(M,X,w) = (ww^{-1}, ST(M,X,w), w)$ with initial state (vertex) $ww^{-1} \in M$, terminal state $w \in M$ and the set $ST(M,X,w)$ of states. The language accepted by this automaton is the set

$$L(w) = \{ u \in M : u \text{ labels a path in } A(M,X,w) \text{ from } ww^{-1} \text{ to } w \text{ in } ST(M,X,w) \}.$$

(Here w and u are regarded as words in $(X \cup X^{-1})^*$ and as elements of M, and we regard the language $L(w)$ as a subset of M.) Further details about Schützenberger graphs can be found in [12] and [9].

The following theorem of Stephen [12] is very useful in deciding the word problem for an inverse semigroup.

Theorem 0.1. Let $M = \text{Inv}(X|R)$ and let $u,v \in (X \cup X^{-1})^*$ (also interpreted as elements of M as above). Then

1. $L(u) = \{ v \in M : v \geq u \text{ in the natural partial order on } M \text{ (defined below) } \}$.

2. $u = v$ in M iff $L(u) = L(v)$ iff $v \in L(u)$ and $u \in L(v)$ iff $A(u)$ and $A(v)$ are isomorphic as birooted edge-labeled graphs.

The natural partial order on the elements of M is defined by $a \leq b$ iff $a = aa^{-1}b$. The equivalence relation σ on M is defined by $a\sigma b$ iff there exists an element $u \in M$ such that $u \leq a,b$. σ is a congruence relation with the following properties:

1. M/σ is a group such that M/σ is isomorphic to the group $G = Gp(X|R)$.

2. If μ is a congruence on M such that M/μ is a group then then $\sigma \subseteq \mu$.

The proofs of the above facts can be found in [8]. There exists a natural homomorphism $\sigma : M \rightarrow M/\sigma$. The group G is the **maximal group homomorphic image** of M.

The inverse semigroup M is called E-unitary if $\sigma^{-1}(1) = \{ e \in M : e^2 = e \}$.

Adian Presentations

Let X be a nonempty set and $R \subset (X \cup X^{-1})^+ \times (X \cup X^{-1})^+$ then the pair $\langle X|R \rangle$ is called a presentation. For each relation $(r,s) \in R$ the words r and s are called R-words. If each R-word r is an element of X^+, then the presentation $\langle X|R \rangle$ is called a positive presentation.

Let $\langle X|R \rangle$ be a positive presentation. Then the **left graph** of $\langle X|R \rangle$ is denoted by $LG(\langle X|R \rangle)$. It is an undirected graph whose set of vertices is X. For each relation $(r,s) \in R$ there is an undirected edge joining the first letter of r to the first letter of s. Similarly, the **right graph** of the presentation $\langle X|R \rangle$ is denoted by $RG(\langle X|R \rangle)$ and can be constructed dually to the left graph. A closed path in a graph is called a **cycle**. If both the left and the right graphs of the presentation $\langle X|R \rangle$ are cycle free, then $\langle X|R \rangle$ is called a **cycle free presentation** or an Adian presentation.

If $\langle X|R \rangle$ is an Adian presentation, then the semigroup $Sg(\langle X|R \rangle)$ is called an Adian semigroup, the inverse semigroup $Inv(\langle X|R \rangle)$ is called an Adian inverse semigroup and the group $Gp(\langle X|R \rangle)$ is called an Adian group. In [1], Adian proved that a finitely presented Adian semigroup $Sg(\langle X|R \rangle)$ embeds into the Adian group $Gp(\langle X|R \rangle)$. Subsequently in [10] also provided the proof of the same fact by using a geometrical approach. Remmers’ proof was stronger than the Adian’s proof in the sense that it was also valid for infinite presentations.
In [2], Adian studies the word problem for some special classes of semigroups and groups and conjectured that the word problem is decidable for Adian semigroups.

Sarkisian proposed a solution to Adian’s conjecture in [11], but subsequently it was recognized that the proof is only valid for a particular class of Adian semigroups. So the problem is still unsolved.

We observed the following facts:

Proposition 0.2. (Muhammad Inam and Robert Ruyle) An Adian semigroup $Sg\langle X | R \rangle$ embeds into the corresponding Adian inverse semigroup $Inv\langle X | R \rangle$.

Proposition 0.3. (Muhammad Inam, John Meakin and Robert Ruyle) Let $\langle X | R \rangle$ be an Adian presentation, then the word problem for $Sg\langle X | R \rangle$ and $Gp\langle X | R \rangle$ is decidable if

1. the inverse semigroup $Inv\langle X | R \rangle$ is E–unitary.

2. the word problem for $Inv\langle X | R \rangle$ is decidable.

We proved the following theorem:

Theorem 0.4. (Muhammad Inam, John Meakin and Robert Ruyle) Adian inverse semigroups are E-unitary.

A Structural Property Of Adian Inverse Semigroups

In this section we briefly outline the proof of the fact that an Adian inverse semigroup is E–unitary. The proof makes use of the notion of a Van-Kampen diagram.

Informally, for a group $G = Gp\langle X | R \rangle$, a Van Kampen diagram is a planer diagram whose boundary is label is an element of $(X \cup X^{-1})^*$ and is equal to the identity of G. A formal definition can be found in [6].

Remmers proved the following results about a Van-Kampen diagram over an Adian presentation in [10]

Lemma 0.5. Let Δ be a Van-Kampen diagram for a word w over an Adian presentation $\langle X | R \rangle$. Then :

1. Δ has no interior sources and no interior sinks.

2. Δ contains no directed (i.e. positively labeled) cycles.

3. Every positively labeled interior edge of Δ can be extended to a directed transversal of Δ.

For our purpose we introduce the following definitions.

Definition 0.1. A subdiagram Δ' of a Van-Kampen diagram Δ is called a simple component of Δ if it is a maximal subdiagram whose boundary is a simple closed curve.

Definition 0.2. For a Van-Kampen diagram Δ over an Adian presentation $\langle X | R \rangle$ a transversal subdiagram Δ' is a subdiagram of a simple component of Δ such that Δ' has a boundary cycle of the form pq, where p is a directed transversal and q is a subpath of a boundary cycle of the simple component in which Δ' is contained.

Definition 0.3. For a Van-Kampen diagram Δ over an Adian presentation $\langle X | R \rangle$, a special 2-cell is a 2-cell one of whose two sides lies entirely on the boundary of Δ.

Then we obtained the following lemmas, which enabled us to prove our main theorem.
Lemma 0.6. If Δ is a Van Kampen diagram with exactly one simple component and no extremal vertex then Δ has a directed transversal if and only if it has more than one 2-cell. Furthermore, any directed transversal of Δ divides Δ into two transversal subdiagrams each of which may be viewed as a Van-Kampen diagram with exactly one simple component and no extremal vertex.

Lemma 0.7. Let Δ be a Van-Kampen diagram over an Adian presentation $\langle X | R \rangle$ that has more than one 2-cell and suppose that Δ has just one simple component and no extremal vertex. Then Δ contains at least two special 2-cells.

Lemma 0.8. Let Δ be a Van-Kampen diagram over an Adian presentation $\langle X | R \rangle$ and suppose that Δ has just one simple component and no extremal vertex. Then any word labeling a boundary cycle of Δ, starting and ending at any vertex 0 on the boundary of Δ, is an idempotent in the inverse monoid $S = \text{Inv}(X | R)$.

Theorem 0.9. (Muhammad Inam, John Meakin and Robert Ruyle) Adian inverse semigroups are E-unitary.

The proof of the theorem 0.9 follows from the above lemmas and by applying induction on the number of simple components of a Van-Kampen diagram.

The Word Problem for One Relator Adian Inverse Semigroups

In this section I briefly describe some subclasses of one relator Adian inverse semigroup for which the word problem is decidable.

In [12] Stephen proved that if $\text{Inv}(X | R)$ is a positively presented inverse semigroup, where X is finite and $|r| = |s|$ for all $(r, s) \in R$, then $\text{Inv}(X | R)$ has decidable word problem. So, the word problem for $\text{Inv}(X | u = v)$ is decide if $|u| = |v|$.

Let $M = \text{Inv}(X | u = v)$ be an Adian inverse semigroup, where X is finite and $|u| > |v|$.

Proposition 0.10. The word problem for M is decidable if either no suffix of u is a prefix of v, or no prefix of u is a suffix of v.

The case, when a prefix of u is a suffix of v and a suffix of u is a prefix of v is more complicated and is still open. However, I have proved the following result:

Proposition 0.11. The word problem for the Baumslag-Solitar inverse semigroup $\text{Inv}\langle a, b | ab^n = b^n a \rangle$, where $m, n \in \mathbb{N}$, is decidable.

The Word Problem for a Class of Positively Presented Semigroups and Inverse Semigroups

My work is also concerned with other classes of positively presented inverse semigroups that satisfy condition (*) (defined below).

Definition 0.4. We say that a positive presentation $\langle X | R \rangle$ satisfies condition (*), if no prefix of an R–word is a suffix of itself or any other R–word,

I observed that if I impose an extra condition on those presentations which satisfy condition (*), then we we obtain the following result:
Proposition 0.12. Let \(M = \text{Inv}(X|R) \) be an inverse semigroup, where \((X|R) \) is a positive presentation that satisfies the condition (*) and no \(R \)-word is a subword of another \(R \)-word. Then the Schützenberger graph of every word of \((X \cup X^{-1})^* \) is finite. Hence the word problem for \(M \) is decidable.

We define a directed graph for a positive presentation, called the bi-sided graph of the presentation:

Definition 0.5. The bi-sided graph of a positive presentation \((X|R) \) is a directed graph whose vertex set is the set of all \(R \)-words. For each relation \((u_i, v_1u_jv_2) \in R \), where \(v_1, v_2 \in X^+ \) and \(u_i \) and \(u_j \), are not necessarily distinct \(R \)-words, there exists a directed edge from the vertex labeled by \(u_i \) to the vertex labeled by \(u_j \).

A closed directed path in a bi-sided graph is called a cycle.

Definition 0.6. A presentation \((x|R) \) is called acyclic presentation if the corresponding bi-sided graph is cycle free.

We have proved the following proposition:

Proposition 0.13. Let \(M = \text{Inv}(X|R) \) be an inverse semigroup, where \((X|R) \) is a positive, acyclic presentation that satisfies condition (*), then the Schützenberger graph of every word of \((X \cup X^{-1})^* \) is finite. Hence the word problem for \(M \) is decidable.

We have also proved the following proposition:

Theorem 0.14. Let \((X|R) \) be a positive presentation that satisfies condition (*) and assumes that \(R \) contains no relation of the form \(pq = psq \) for some \(p, s, q \in X^+ \). Then the semigroup \(S = Sg(X|R) \) embeds into the inverse semigroup \(M = \text{Inv}(X|R) \).

So, if the word problem for \(M \) is decidable then the word problem for \(S \) is also decidable. Based on all the results we have stated above, we conjecture the following statement:

Conjecture 0.15. Let \(M = \text{Inv}(X|R) \) be an inverse semigroup, where \((X|R) \) is a positive presentation that satisfies the condition (*), then the word problem for \(M \) is decidable.

References