Table of Contents

- Essentials of Relativity
 - History
 - Important Definitions
 - Time Dilation
 - Lorentz Transformation

- Space of Relativity
 - Interval
 - Predictions
 - Topology
History

1632: Galileo Galilei publishes *Dialogue concerning the two chief world systems*

1687: Isaac Newton releases *Philosophiae Naturalis Principia Mathematica*.

1865: James Clerk Maxwell unifies the theories of electricity and magnetism.

\[\nabla \cdot \mathbf{D} = 4\pi \rho \\
\nabla \cdot \mathbf{B} = 0 \\
\n\nabla \times \mathbf{H} = \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t} \\
\n\n\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0 \]
1632: Galileo Galilei publishes *Dialogue concerning the two chief world systems*
History

- 1632: Galileo Galilei publishes *Dialogue concerning the two chief world systems*
- 1687: Isaac Newton releases *Philosophiae Naturalis Principia Mathematica*.
History

- 1632: Galileo Galilei publishes *Dialogue concerning the two chief world systems*
- 1687: Isaac Newton releases *Philosophiae Naturalis Principia Mathematica*.
- 1865: James Clerk Maxwell unifies the theories of electricity and magnetism.
1632: Galileo Galilei publishes *Dialogue concerning the two chief world systems*

1687: Isaac Newton releases *Philosophiae Naturalis Principia Mathematica*.

1865: James Clerk Maxwell unifies the theories of electricity and magnetism.

\[\nabla \cdot D = 4\pi \rho \]

\[\nabla \cdot B = 0 \]

\[\nabla \times H = \frac{4\pi}{c} J + \frac{1}{c} \frac{\partial D}{\partial t} \]

\[\nabla \times E + \frac{1}{c} \frac{\partial B}{\partial t} = 0 \]
1887: Null result of the Michelson-Morley Experiment.
1887: Null result of the Michelson-Morley Experiment.

1905: Albert Einstein reveals the *Theory of Special Relativity*.
1887: Null result of the Michelson-Morley Experiment.

1905: Albert Einstein reveals the *Theory of Special Relativity*.

Postulate 1

There is no absolute standard of rest; only relative motion is observable.
1887: Null result of the Michelson-Morley Experiment.
1905: Albert Einstein reveals the *Theory of Special Relativity*.

Postulate 1
There is no absolute standard of rest; only relative motion is observable.

Postulate 2
The velocity of light c is independent of the motion of the source.
Definitions

Definition

The four-dimensional set of axes is known as *spacetime*.
The four-dimensional set of axes is known as \textit{spacetime}.
Definitions

Definition
The four-dimensional set of axes is known as *spacetime*.

Definition
In classical mechanics, motion is described in a *frame of reference*.
Definition

A reference frame is **inertial** if every test particle initially at rest remains at rest and every particle in motion remains in motion without changing speed or direction.

Definition

An **event** is a point \((t, x, y, z)\) in spacetime.

Definition

Any line which joins different events associated with a given object will be called a **world-line**.

Definition

An **observer** is a series of clocks in an inertial reference frame which measures the time.
Definition

A reference frame is *inertial* if every test particle initially at rest remains at rest and every particle in motion remains in motion without changing speed or direction.
Definition

A reference frame is *inertial* if every test particle initially at rest remains at rest and every particle in motion remains in motion without changing speed or direction.

Definition

An *event* is a point \((t, x, y, z)\) in spacetime.
Definition

A reference frame is *inertial* if every test particle initially at rest remains at rest and every particle in motion remains in motion without changing speed or direction.

Definition

An *event* is a point \((t, x, y, z)\) in spacetime.

Definition

Any line which joins different events associated with a given object will be called a *world-line*.
Definition

A reference frame is *inertial* if every test particle initially at rest remains at rest and every particle in motion remains in motion without changing speed or direction.

Definition

An *event* is a point \((t, x, y, z)\) in spacetime.

Definition

Any line which joins different events associated with a given object will be called a *world-line*.

Definition

An *observer* is a series of clocks in an inertial reference frame which measures the time.
Theorem

Given two observers, O and O', events in the inertial frames of reference set up by the observers are related by:

$$
\begin{align*}
 t' &= t \\
 x' &= x + vt \\
 y' &= y \\
 z' &= z
\end{align*}
$$

where v is the relative velocity which O' is moving with respect to O.

This theorem is incorrect (physically). We have to reexamine our ideas of time.
Theorem

Given two observers, O and O', events in the inertial frames of reference set up by the observers are related by:

$$
\begin{align*}
 t' &= t \\
 x' &= x + vt \\
 y' &= y \\
 z' &= z
\end{align*}
$$

where v is the relative velocity which O' is moving with respect to O.

This theorem is incorrect (physically). We have to reexamine our ideas of time.
Definition

The *proper time* τ along the worldline of a particle in constant motion is the time measured in an inertial coordinate system in which the particle is at rest.
Definition

The *proper time* τ along the worldline of a particle in constant motion is the time measured in an inertial coordinate system in which the particle is at rest.

If we assume Postulate 2 by Einstein (that c is a constant), then $t = kt'$.
Definition

The proper time τ along the worldline of a particle in constant motion is the time measured in an inertial coordinate system in which the particle is at rest.

If we assume Postulate 2 by Einstein (that c is a constant), then $t = kt'$. But if O' is at rest relative to O, $t' = kt$.
Definition

The *proper time* τ along the worldline of a particle in constant motion is the time measured in an inertial coordinate system in which the particle is at rest.

If we assume Postulate 2 by Einstein (that c is a constant), then $t = kt'$. But if O' is at rest relative to O, $t' = kt$. This k is known as Bondi’s k-factor.
According to O, $t = kt'$, where k is a constant. According to O', $t' = kt$.

$d_B = \frac{1}{2}c(k^2 - 1)t$ and $t_B = \frac{1}{2}(k^2 + 1)t$.
Bondi’s k-factor

According to O, $t = kt'$, where k is a constant. According to O', $t' = kt$.

d_E = \frac{1}{2}c(k^2 - 1)t_E$ and $t_B = \frac{1}{2}(k^2 + 1)t_B$.
According to O, $t = kt'$, where k is a constant. According to O', $t' = kt$.

t_B and d_B can be expressed as:
According to O, $t = kt'$, where k is a constant. According to O', $t' = kt$.

t_B$ and d_B can be expressed as:

$$d_B = \frac{1}{2}c(k^2 - 1)t$$
Bondi’s k-factor

According to O, $t = kt'$, where k is a constant. According to O', $t' = kt$.

t_B and d_B can be expressed as:

\[d_B = \frac{1}{2}c(k^2 - 1)t \quad \text{and} \quad t_B = \frac{1}{2}(k^2 + 1)t. \]
The Gamma Factor

\[v = \frac{d_B}{t_B} = \frac{1}{2} c (k^2 - 1) t = \frac{1}{2} \left(\frac{k^2}{k^2 + 1} \right) \frac{c(k^2 - 1)}{(k^2 + 1)}. \]
The Gamma Factor

\[v = \frac{d_B}{t_B} = \frac{1}{2} c (k^2 - 1)t = \frac{c(k^2 - 1)}{(k^2 + 1)} . \]

\[v k^2 + v = c k^2 - c \]

\[c + v = c k^2 - v k^2 \]

\[c + v = k^2 (c - v) \]

\[k = \sqrt{\frac{c + v}{c - v}} > 1. \]
The Gamma Factor

\[v = \frac{d_B}{t_B} = \frac{1}{2} c(k^2 - 1)t = \frac{c(k^2 - 1)}{(k^2 + 1)}. \]

\[vk^2 + v = ck^2 - c \]
\[c + v = ck^2 - vk^2 \]
\[c + v = k^2(c - v) \]
\[k = \sqrt{\frac{c + v}{c - v}} > 1. \]

\[\frac{\text{time } E \text{ to } B \text{ measured by } O}{\text{time } E \text{ to } B \text{ measured by } O'} = \frac{t_B}{kt} = \frac{(k^2 + 1)t}{2kt} = \gamma(v) \]
The Gamma Factor

\[v = \frac{d_B}{t_B} = \frac{\frac{1}{2} c (k^2 - 1) t}{\frac{1}{2} (k^2 + 1) t} = \frac{c (k^2 - 1)}{(k^2 + 1)}. \]

\[\gamma(v) = \frac{(k^2 + 1) t}{2 k t} = \frac{1}{\sqrt{1 - v^2/c^2}}. \]
The Lorentz Transformation

The inertial coordinate systems set up by two observers are related by:

\[
\begin{align*}
 t &= t' + \left(\frac{v_x'}{c^2} \right) \sqrt{1 - \left(\frac{v}{c} \right)^2} \\
 x &= x' + v t' \sqrt{1 - \left(\frac{v}{c} \right)^2}
\end{align*}
\]

We can write this more concisely as

\[
(\gamma v) (cv') = \gamma \left(\frac{v}{c} \right) (cv')
\]

where \(v \) is the relative velocity.
The Lorentz Transformation

Theorem

The inertial coordinate systems set up by two observers are related by:

\[
\begin{align*}
 t &= t' + \frac{vx'/c^2}{\sqrt{1 - (v/c)^2}} \\
 x &= \frac{x' + vt'}{\sqrt{1 - (v/c)^2}}
\end{align*}
\]

We can write this more concisely as

\[
\begin{pmatrix}
 ct \\
 x
\end{pmatrix} = \gamma(v) \begin{pmatrix}
 1 & v/c \\
 v/c & 1
\end{pmatrix} \begin{pmatrix}
 ct' \\
 x'
\end{pmatrix}
\]

where \(v \) is the relative velocity.
Proof

First consider two observers moving at constant speeds. We express an event in terms of both coordinate systems. We substitute in for Bondi’s \(k \)-factor:

\[
\frac{ct}{x} = \frac{1}{2} \left(k + \frac{1}{k} - 1 \right) \left(\frac{ct'}{x'} \right)
\]

After some algebra and simplification, we have our result (2).
Proof

First consider two observers moving at constant speeds.
Proof

- First consider two observers moving at constant speeds.
- We express an event in terms of both coordinate systems.
Proof

- First consider two observers moving at constant speeds.
- We express an event in terms of both coordinate systems.
- We substitute in for Bondi’s k-factor

\[
\begin{pmatrix}
 c t \\
 x
\end{pmatrix} = \frac{1}{2} \begin{pmatrix}
 k + k^{-1} & k - k^{-1} \\
 k - k^{-1} & k + k^{-1}
\end{pmatrix} \begin{pmatrix}
 c t' \\
 x'
\end{pmatrix}
\]

- After some algebra and simplification, we have our result \square.
Proof

- First consider two observers moving at constant speeds.
- We express an event in terms of both coordinate systems.
- We substitute in for Bondi’s k-factor

$$
\begin{pmatrix}
 ct \\
 x
\end{pmatrix} = \frac{1}{2} \begin{pmatrix}
 k + k^{-1} & k - k^{-1} \\
 k - k^{-1} & k + k^{-1}
\end{pmatrix}\begin{pmatrix}
 ct' \\
 x'
\end{pmatrix}
$$

- After some algebra and simplification, we have our result \square.
In four dimensions,

\[
\begin{pmatrix}
ct \\
x \\
y \\
z
\end{pmatrix} = \begin{pmatrix}
\gamma & \gamma v/c & 0 & 0 \\
\gamma v/c & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
ct' \\
x' \\
y' \\
z'
\end{pmatrix}
\] (2)

where \(v\) is the relative velocity and \(\gamma = \gamma(v)\).
In four dimensions,

\[
\begin{pmatrix}
ct \\
x \\
y \\
z
\end{pmatrix}
= \begin{pmatrix}
\gamma & \gamma v/c & 0 & 0 \\
\gamma v/c & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
ct' \\
x' \\
y' \\
z'
\end{pmatrix}
\]

(2)

where \(v \) is the relative velocity and \(\gamma = \gamma(v) \).

Definition

The 4 \times 4 matrix in (2) is known as the *boost*, denoted \(L_v \).

With the properties of the boost, we can look at how an observer would judge a moving particle’s velocity.
Theorem

A particle cannot travel faster than c, the velocity of light.
Theorem

A particle cannot travel faster than c, the velocity of light.

Proof:

$$\begin{pmatrix} ct' \\ x' \end{pmatrix} = \gamma(u) \begin{pmatrix} 1 & -u/c \\ -u/c & 1 \end{pmatrix} \begin{pmatrix} ct \\ -vt + b \end{pmatrix}.$$
Theorem

A particle cannot travel faster than c, the velocity of light.

Proof:

\[
\begin{pmatrix}
 ct' \\
 x'
\end{pmatrix} = \gamma(u) \begin{pmatrix}
 1 & -u/c \\
 -u/c & 1
\end{pmatrix} \begin{pmatrix}
 ct \\
 -\nu t + b
\end{pmatrix}.
\]

\[
w = -\frac{dx'}{dt'} = \frac{v + u}{1 + uv/c^2}.
\]
\[w = \frac{v + u}{1 + uv/c^2}. \]

Letting \(|u| < c\) and \(|v| < c\), we see that \(|w| < c\) since
\[w = \frac{v + u}{1 + uv/c^2}. \]

Letting \(|u| < c\) and \(|v| < c\), we see that \(|w| < c\) since

\[
(c - u)(c - v) > 0 \iff -(u + v)c > -c^2 - uv
\]

\[
u + v < c \left(1 + \frac{uv}{c^2}\right)
\]

\[w < c.\]
\[w = \frac{v + u}{1 + uv/c^2}. \]

Letting \(|u| < c\) and \(|v| < c\), we see that \(|w| < c\) since

\[
(c - u)(c - v) > 0 \iff -(u + v)c > -c^2 - uv
\]

\[
u + v < c \left(1 + \frac{uv}{c^2}\right)
\]

\[w < c. \]

\[
(c + u)(c + v) > 0 \iff (u + v)c > -c^2 - uv
\]

\[
u + v > -c \left(1 + \frac{uv}{c^2}\right)
\]

\[w > -c. \quad \square\]
In four-dimensions, we can say that

\[
\begin{pmatrix}
ct \\
x \\
y \\
z
\end{pmatrix} = \mathbf{L}
\begin{pmatrix}
ct' \\
x' \\
y' \\
z'
\end{pmatrix}
\tag{3}
\]

where \(\mathbf{L} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \), and \(\mathbf{H}, \mathbf{K} \) are 3\times3 orthogonal matrices.

Definition
The matrix \(\mathbf{L} \) in (3) is a Lorentz transformation if

\[\mathbf{L}^{-1} = \mathbf{gL}^T \mathbf{g}, \]

where \(\mathbf{g} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \).

\(\mathbf{L} \) is orthochronous if \(l_{1,1} \), \(l_{2,2} \) > 0, where \(l_{1,1} \) is the first entry of the first row of \(\mathbf{L} \).
In four-dimensions, we can say that

\[
\begin{pmatrix}
ct \\
 x \\
y \\
z
\end{pmatrix} = L
\begin{pmatrix}
ct' \\
x' \\
y' \\
z'
\end{pmatrix}
\]

where

\[L = \begin{pmatrix} 1 & 0 \\ 0 & H \end{pmatrix} L_v \begin{pmatrix} 1 & 0 \\ 0 & K^T \end{pmatrix}\]

and \(H, K\) are 3 \times 3 orthogonal matrices.
In four-dimensions, we can say that

\[
\begin{pmatrix}
ct \\
x \\
y \\
z
\end{pmatrix}
= L
\begin{pmatrix}
ct' \\
x' \\
y' \\
z'
\end{pmatrix}
\tag{3}
\]

where

\[
L = \begin{pmatrix}
1 & 0 \\
0 & H
\end{pmatrix}
L_v
\begin{pmatrix}
1 & 0 \\
0 & K^T
\end{pmatrix}
\]

and \(H, K\) are 3 \(\times\) 3 orthogonal matrices.

Definition

The matrix \(L\) in (3) is a *Lorentz transformation* if
In four-dimensions, we can say that

$$
\begin{pmatrix}
ct \\
x \\
y \\
z
\end{pmatrix} = L
\begin{pmatrix}
ct' \\
x' \\
y' \\
z'
\end{pmatrix}
$$

(3)

where $L = \begin{pmatrix} 1 & 0 \\ 0 & H \end{pmatrix} L_v \begin{pmatrix} 1 & 0 \\ 0 & K^T \end{pmatrix}$ and H, K are 3×3 orthogonal matrices.

Definition

The matrix L in (3) is a *Lorentz transformation* if $L^{-1} = g L^T g$, where

$$
g = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}.
$$
In four-dimensions, we can say that

\[
\begin{pmatrix}
ct \\
x \\
y \\
z
\end{pmatrix} = L
\begin{pmatrix}
c t' \\
x' \\
y' \\
z'
\end{pmatrix}
\]

where

\[
L = \begin{pmatrix} 1 & 0 \\ 0 & H \end{pmatrix} L_v \begin{pmatrix} 1 & 0 \\ 0 & K^T \end{pmatrix}
\]

and \(H, K\) are 3 \(\times\) 3 orthogonal matrices.

Definition

The matrix \(L\) in (3) is a *Lorentz transformation* if \(L^{-1} = gL^T g\), where

\[
g = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}
\]

\(L\) is *orthochronous* if \(l_{1,1} > 0\), where \(l_{1,1}\) is the first entry of the first row of \(L\).
Definition

In special relativity, the space we live in is called *Minkowski Space*, denoted by \(M = \mathbb{R} \times \mathbb{R}^3 \) where \(\mathbb{R} = \mathbb{R} \times 0 \) is the time axes, and \(\mathbb{R}^3 = 0 \times \mathbb{R}^3 \) the space axes.
Definition

In special relativity, the space we live in is called *Minkowski Space*, denoted by $M = \mathbb{R} \times \mathbb{R}^3$ where $\mathbb{R} = \mathbb{R} \times 0$ is the time axes, and $\mathbb{R}^3 = 0 \times \mathbb{R}^3$ the space axes.

The distance D from a point to the origin is $D = \sqrt{x^2 + y^2 + z^2}$.
Definition

In special relativity, the space we live in is called *Minkowski Space*, denoted by $\mathbb{M} = \mathbb{R} \times \mathbb{R}^3$ where $\mathbb{R} = \mathbb{R} \times 0$ is the time axes, and $\mathbb{R}^3 = 0 \times \mathbb{R}^3$ the space axes.

The distance D from a point to the origin is $D = \sqrt{x^2 + y^2 + z^2}$.

- Emit a light pulse when $t = x = y = z = 0$.

Jared Ruiz
Advised by Dr. Steven Kent
The Mathematics of Special Relativity
In special relativity, the space we live in is called *Minkowski Space*, denoted by $\mathbb{M} = \mathbb{R} \times \mathbb{R}^3$ where $\mathbb{R} = \mathbb{R} \times 0$ is the time axes, and $\mathbb{R}^3 = 0 \times \mathbb{R}^3$ the space axes.

The distance D from a point to the origin is $D = \sqrt{x^2 + y^2 + z^2}$.

- Emit a light pulse when $t = x = y = z = 0$.
- It arrives at (ct, x, y, z) if $ct = \sqrt{x^2 + y^2 + z^2} = D$.
Definition

In special relativity, the space we live in is called *Minkowski Space*, denoted by $M = \mathbb{R} \times \mathbb{R}^3$ where $\mathbb{R} = \mathbb{R} \times 0$ is the time axes, and $\mathbb{R}^3 = 0 \times \mathbb{R}^3$ the space axes.

The distance D from a point to the origin is $D = \sqrt{x^2 + y^2 + z^2}$.

- Emit a light pulse when $t = x = y = z = 0$.
- It arrives at (ct, x, y, z) if $ct = \sqrt{x^2 + y^2 + z^2} = D$.
- $c^2 t^2 = D^2$, and $c^2 t^2 - x^2 - y^2 - z^2 = 0$.
Definition

In special relativity, the space we live in is called *Minkowski Space*, denoted by $\mathbb{M} = \mathbb{R} \times \mathbb{R}^3$ where $\mathbb{R} = \mathbb{R} \times 0$ is the time axes, and $\mathbb{R}^3 = 0 \times \mathbb{R}^3$ the space axes.

The distance D from a point to the origin is $D = \sqrt{x^2 + y^2 + z^2}$.

- Emit a light pulse when $t = x = y = z = 0$.
- It arrives at (ct, x, y, z) if $ct = \sqrt{x^2 + y^2 + z^2} = D$.
- $c^2 t^2 = D^2$, and $c^2 t^2 - x^2 - y^2 - z^2 = 0$.

Definition

In Minkowski space, the *interval* between any two events $x = (t_1, x_1, y_1, z_1)$ and $y = (t_2, x_2, y_2, z_2)$ is defined to be

$$c^2(t_2 - t_1)^2 - (x_2 - x_1)^2 - (y_2 - y_1)^2 - (z_2 - z_1)^2.$$
Invariance of the Interval

If

\[c^2(t_2 - t_1)^2 - (x_2 - x_1)^2 - (y_2 - y_1)^2 - (z_2 - z_1)^2 = 0 \]

for an observer \(O \),
Invariance of the Interval

If

\[c^2(t_2 - t_1)^2 - (x_2 - x_1)^2 - (y_2 - y_1)^2 - (z_2 - z_1)^2 = 0 \]

for an observer \(O \), then

\[c^2(t'_2 - t'_1)^2 - (x'_2 - x'_1)^2 - (y'_2 - y'_1)^2 - (z'_2 - z'_1)^2 = 0 \]

for an observer \(O' \), moving with constant velocity relative to \(O \).
Invariance of the Interval

If

\[c^2(t_2 - t_1)^2 - (x_2 - x_1)^2 - (y_2 - y_1)^2 - (z_2 - z_1)^2 = 0 \]

for an observer \(O \), then

\[c^2(t'_2 - t'_1)^2 - (x'_2 - x'_1)^2 - (y'_2 - y'_1)^2 - (z'_2 - z'_1)^2 = 0 \]

for an observer \(O' \), moving with constant velocity relative to \(O \). Because of this, we say the interval is \textit{invariant}.
The Inner Product

Definition

In \mathbb{M}, two objects $X = (X_0, X_1, X_2, X_3)$ and $X' = (X'_0, X'_1, X'_2, X'_3)$ are called *four-vectors* if

$$X = LX'$$

where L is the general Lorentz transformation.

Definition
The Inner Product

Definition

In \mathbb{M}, two objects $X = (X_0, X_1, X_2, X_3)$ and $X' = (X'_0, X'_1, X'_2, X'_3)$ are called *four-vectors* if

$$X = LX'$$

where L is the general Lorentz transformation.

For $x = (ct_1, x_1, y_1, z_1), y = (ct_2, x_2, y_2, z_2) \in \mathbb{M}$, the displacement four-vector

$$X = y - x = c(t_2 - t_1) + (x_2 - x_1) + (y_2 - y_1) + (z_2 - z_1).$$
The Inner Product

Definition

In \mathbb{M}, two objects $X = (X_0, X_1, X_2, X_3)$ and $X' = (X'_0, X'_1, X'_2, X'_3)$ are called four-vectors if

$$X = LX'$$

where L is the general Lorentz transformation.

For $x = (ct_1, x_1, y_1, z_1)$, $y = (ct_2, x_2, y_2, z_2) \in \mathbb{M}$, the displacement four-vector

$$X = y - x = c(t_2 - t_1) + (x_2 - x_1) + (y_2 - y_1) + (z_2 - z_1).$$

Definition

The inner product between two four-vectors $X, Y \in \mathbb{M}$ is:

$$g(X, Y) = X_0 Y_0 - X_1 Y_1 - X_2 Y_2 - X_3 Y_3.$$
Predictions

Definition

The *four-velocity* of a particle, \((V_0, V_1, V_2, V_3)\), is given by:

\[
V_0 = c \frac{dt}{d\tau}, \quad V_1 = \frac{dx}{d\tau}, \quad V_2 = \frac{dy}{d\tau}, \quad V_3 = \frac{dz}{d\tau}.
\]
The **four-velocity** of a particle, \((V_0, V_1, V_2, V_3)\), is given by:

\[
V_0 = c \frac{dt}{d\tau}, \quad V_1 = \frac{dx}{d\tau}, \quad V_2 = \frac{dy}{d\tau}, \quad V_3 = \frac{dz}{d\tau}.
\]

Theorem

Let an observer \(O\) be moving with constant velocity \(V\). Then \(O\) sees two events \(A\) and \(B\) as being simultaneous if and only if the displacement \(g(X, V) = 0\), where \(X = B - A\).
Definition

The *four-velocity* of a particle, \((V_0, V_1, V_2, V_3)\), is given by:

\[
V_0 = c \frac{dt}{d\tau}, \quad V_1 = \frac{dx}{d\tau}, \quad V_2 = \frac{dy}{d\tau}, \quad V_3 = \frac{dz}{d\tau}.
\]

Theorem

Let an observer \(O\) be moving with constant velocity \(V\). Then \(O\) sees two events \(A\) and \(B\) as being simultaneous if and only if the displacement \(g(X, V) = 0\), where \(X = B - A\).

Corollary

Two events which are simultaneous for one observer may not be simultaneous for another observer moving at constant velocity with the respect to the first observer.
Theorem

If a rod has length R_0 in a rest frame, then in an inertial coordinate system oriented in the direction of the unit vector e and moving with respect to the rod with velocity v, the length of the rod is:
The Lorentz Contraction

Theorem

If a rod has length R_0 in a rest frame, then in an inertial coordinate system oriented in the direction of the unit vector \mathbf{e} and moving with respect to the rod with velocity \mathbf{v}, the length of the rod is:

$$R = \frac{R_0 \sqrt{c^2 - v^2}}{\sqrt{c^2 - v^2 \sin^2(\theta)}}$$

where θ is the angle between \mathbf{e} and \mathbf{v}.
Definition

The *rest mass* $m_0 = m(0)$ of a body is the mass of a body measured in an inertial coordinate system in which the body is at rest.
Definition

The \textit{rest mass} $m_0 = m(0)$ of a body is the mass of a body measured in an inertial coordinate system in which the body is at rest.

Theorem

A body’s inertial mass m is a function of v, and can be rewritten as $m = m(v) = \gamma(v)m_0$.

$E = mc^2$.

Jared Ruiz
Advised by Dr. Steven Kent

The Mathematics of Special Relativity
Definition

The *rest mass* \(m_0 = m(0) \) of a body is the mass of a body measured in an inertial coordinate system in which the body is at rest.

Theorem

A body’s inertial mass \(m \) is a function of \(v \), and can be rewritten as \(m = m(v) = \gamma(v)m_0 \).

Theorem

\[E = mc^2. \]
Recall:

\[g(X,Y) = X_0 Y_0 - X_1 Y_1 - X_2 Y_2 - X_3 Y_3. \]

For any three four-vectors \(X, Y, Z \in M \), and \(\alpha \in \mathbb{R} \):

\[g(X,Y) = g(Y,X). \]

\[g(\alpha X + \beta Y, Z) = \alpha g(X,Z) + \beta g(Y,Z). \]

But \(g(X,Y) < 0 \) if \(X_0 Y_0 < X_1 Y_1 + X_2 Y_2 + X_3 Y_3 \).

So \(g \) is an indefinite inner product.

Thus \(g(X,X) \) (or the interval) can be used to split Minkowski space into cones.
Recall: \(g(X, Y) = X_0 Y_0 - X_1 Y_1 - X_2 Y_2 - X_3 Y_3. \)
Recall: \(g(X, Y) = X_0 Y_0 - X_1 Y_1 - X_2 Y_2 - X_3 Y_3 \).

For any three four-vectors \(X, Y, Z \in \mathbb{M} \), and \(\alpha \in \mathbb{R} \):

\[
\begin{align*}
\quad g(X, Y) &= g(Y, X) \\
\quad g(\alpha X + \beta Y, Z) &= \alpha g(X, Z) + \beta g(Y, Z) \\
\quad &\text{But } g(X, Y) < 0 \text{ if } X_0 Y_0 < X_1 Y_1 + X_2 Y_2 + X_3 Y_3.
\end{align*}
\]

So \(g \) is an indefinite inner product. Thus \(g(X, X) \) (or the interval) can be used to split Minkowski space into cones.
Recall: \(g(X, Y) = X_0 Y_0 - X_1 Y_1 - X_2 Y_2 - X_3 Y_3 \).

For any three four-vectors \(X, Y, Z \in \mathbb{M} \), and \(\alpha \in \mathbb{R} \):

1. \(g(X, Y) = g(Y, X) \).
Recall: \(g(X, Y) = X_0 Y_0 - X_1 Y_1 - X_2 Y_2 - X_3 Y_3 \).

For any three four-vectors \(X, Y, Z \in \mathbb{M} \), and \(\alpha \in \mathbb{R} \):

- \(g(X, Y) = g(Y, X) \).
- \(g(\alpha X + \beta Y, Z) = \alpha g(X, Z) + \beta g(Y, Z) \).
Recall: \(g(X, Y) = X_0 Y_0 - X_1 Y_1 - X_2 Y_2 - X_3 Y_3 \).

For any three four-vectors \(X, Y, Z \in \mathbb{M} \), and \(\alpha \in \mathbb{R} \):

- \(g(X, Y) = g(Y, X) \).
- \(g(\alpha X + \beta Y, Z) = \alpha g(X, Z) + \beta g(Y, Z) \).
- But \(g(X, Y) < 0 \) if \(X_0 Y_0 < X_1 Y_1 + X_2 Y_2 + X_3 Y_3 \).

So \(g \) is an indefinite inner product. Thus \(g(X, X) \) (or the interval) can be used to split Minkowski space into cones.
Recall: $g(X, Y) = X_0 Y_0 - X_1 Y_1 - X_2 Y_2 - X_3 Y_3$.

For any three four-vectors $X, Y, Z \in \mathbb{M}$, and $\alpha \in \mathbb{R}$:

- $g(X, Y) = g(Y, X)$.
- $g(\alpha X + \beta Y, Z) = \alpha g(X, Z) + \beta g(Y, Z)$.
- But $g(X, Y) < 0$ if $X_0 Y_0 < X_1 Y_1 + X_2 Y_2 + X_3 Y_3$.

So g is an *indefinite* inner product.
Recall: \(g(X, Y) = X_0 Y_0 - X_1 Y_1 - X_2 Y_2 - X_3 Y_3 \).

For any three four-vectors \(X, Y, Z \in \mathbb{M} \), and \(\alpha \in \mathbb{R} \):

- \(g(X, Y) = g(Y, X) \).
- \(g(\alpha X + \beta Y, Z) = \alpha g(X, Z) + \beta g(Y, Z) \).
- But \(g(X, Y) < 0 \) if \(X_0 Y_0 < X_1 Y_1 + X_2 Y_2 + X_3 Y_3 \).

So \(g \) is an *indefinite* inner product. Thus \(g(X, X) \) (or the interval) can be used to split Minkowski space into cones.
Definition

For an event \(x \in M \), we have:

- Light-Cone \(C_L(x) = \{ y : g(X, X) = 0 \} \)

- Time-Cone \(C_T(x) = \{ y : g(X, X) > 0 \} \)

- Space-Cone \(C_S(x) = \{ y : g(X, X) < 0 \} \)

where \(y \in M \), and \(X \) is the displacement vector from \(x \) to \(y \).
Definition

For an event \(x \in \mathbb{M} \), we have:

- Light-Cone \(C_{L}(x) = \{ y : g(X, X) = 0 \} \)
- Time-Cone \(C_{T}(x) = \{ y : g(X, X) > 0 \} \)
- Space-Cone \(C_{S}(x) = \{ y : g(X, X) < 0 \} \)
Definition

For an event \(x \in \mathbb{M} \), we have:

- **Light-Cone** \(C^L(x) = \{ y : g(X, X) = 0 \} \)
Definition

For an event $x \in \mathbb{M}$, we have:

- **Light-Cone** $C^L(x) = \{ y : g(X, X) = 0 \}$
- **Time-Cone** $C^T(x) = \{ y : g(X, X) > 0 \}$
Definition

For an event $x \in \mathbb{M}$, we have:

- **Light-Cone** $C^L(x) = \{ y : g(X, X) = 0 \}$
- **Time-Cone** $C^T(x) = \{ y : g(X, X) > 0 \}$
- **Space-Cone** $C^S(x) = \{ y : g(X, X) < 0 \}$

where $y \in \mathbb{M}$, and X is the displacement vector from x to y.
For events $x, y \in \mathbb{M}$ we define a partial ordering $<$ on \mathbb{M} by $x < y$ if the displacement vector X from x to y lies in the future light-cone.
Definition

For events $x, y \in \mathbb{M}$ we define a partial ordering $<$ on \mathbb{M} by $x < y$ if the displacement vector X from x to y lies in the future light-cone.

That is, $x < y$ if $t_y > t_x$, and $g(X, X) > 0$.
The matrix L in (3) is a Lorentz transformation if $L^{-1} = gL^T g$, where $g = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}$.
Definition

The matrix L in (3) is a **Lorentz transformation** if $L^{-1} = gL^Tg$, where

$$g = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
\end{pmatrix}.$$

Definition

Define the **Lorentz group**

$$\mathcal{L} = \{ \lambda : \mathbb{M} \to \mathbb{M} : \forall X, Y \in \mathbb{M}, g(\lambda X, \lambda Y) = g(X, Y) \}.$$
Definition

The matrix L in (3) is a **Lorentz transformation** if $L^{-1} = gL^Tg$,

where $g = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$.

Definition

Define the **Lorentz group**

$\mathcal{L} = \{ \lambda : \mathbb{M} \to \mathbb{M} : \forall X, Y \in \mathbb{M}, g(\lambda X, \lambda Y) = g(X, Y) \}$

$g(X', Y')$
Definition

The matrix L in (3) is a *Lorentz transformation* if $L^{-1} = gL^Tg$, where $g = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$.

Definition

Define the *Lorentz group* $\mathcal{L} = \{ \lambda : M \rightarrow M : \forall X, Y \in M, g(\lambda X, \lambda Y) = g(X, Y) \}$

$g(X', Y') = g(LX, LY)$
Definition

The matrix L in (3) is a *Lorentz transformation* if $L^{-1} = g L^T g$,

$$
L = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
\end{pmatrix}
$$

where $g = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
\end{pmatrix}$.

Definition

Define the *Lorentz group* $\mathcal{L} = \{ \lambda : \mathbb{M} \rightarrow \mathbb{M} : \forall X, Y \in \mathbb{M}, g(\lambda X, \lambda Y) = g(X, Y) \}$

$$
g(X', Y') = g(LX, LY) = g(\lambda X, \lambda Y)
$$
Definition

The matrix L in (3) is a \textit{Lorentz transformation} if $L^{-1} = gL^Tg$, where $g = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}$.

Definition

Define the \textit{Lorentz group}
\[\mathcal{L} = \{ \lambda : \mathbb{M} \rightarrow \mathbb{M} : \forall X, Y \in \mathbb{M}, g(\lambda X, \lambda Y) = g(X, Y) \} \]
\[g(X', Y') = g(LX, LY) = g(\lambda X, \lambda Y) = g(X, Y). \]
The matrix \(L \) in (3) is a *Lorentz transformation* if \(L^{-1} = gL^T g \), where \(g = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \). \(L \) is *orthochronous* if \(l_{1,1} > 0 \), where \(l_{1,1} \) is the first entry of the first row of \(L \).

Define the *Lorentz group* \(\mathcal{L} = \{ \lambda : M \to M : \forall X, Y \in M, g(\lambda X, \lambda Y) = g(X, Y) \} \)

\[g(X', Y') = g(LX, LY) = g(\lambda X, \lambda Y) = g(X, Y). \]
Definition

The matrix L in (3) is a *Lorentz transformation* if $L^{-1} = gL^T g$,
where

$$g = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}.$$

L is *orthochronous* if $l_{1,1} > 0$, where $l_{1,1}$ is the first entry of the first row of L.

Definition

Define the *Lorentz group* $L = \{ \lambda : \mathbb{M} \to \mathbb{M} : \forall X, Y \in \mathbb{M}, g(\lambda X, \lambda Y) = g(X, Y) \}$

$$g(X', Y') = g(LX, LY) = g(\lambda X, \lambda Y) = g(X, Y).$$

Definition

The *orthochronous Lorentz group* L_+ is the subgroup of L whose elements preserve the partial ordering $<$ on \mathbb{M}.
Usually we think of the topology on \mathbb{R}^4 as the standard Euclidean topology \mathcal{T}.
Usually we think of the topology on \mathbb{R}^4 as the standard Euclidean topology T.
Physically, this topology is not useful because:

1. The 4-dimensional Euclidean topology is locally homogeneous, yet \mathbb{M} is not (the light cone separates timelike and spacelike events).
Usually we think of the topology on \mathbb{R}^4 as the standard Euclidean topology \mathcal{T}. Physically, this topology is not useful because:

1. The 4-dimensional Euclidean topology is locally homogeneous, yet \mathcal{M} is not (the light cone separates timelike and spacelike events).

2. The group of all homeomorphisms of \mathbb{R}^4 include mappings of no physical significance.
Usually we think of the topology on \mathbb{R}^4 as the standard Euclidean topology \mathcal{T}.

Physically, this topology is not useful because:

1. The 4-dimensional Euclidean topology is locally homogeneous, yet \mathcal{M} is not (the light cone separates timelike and spacelike events).
2. The group of all homeomorphisms of \mathbb{R}^4 include mappings of no physical significance.

Two properties which \mathcal{T}^F will satisfy are:

1*. \mathcal{T}^F is not locally homogenous, and the light cone through any point can be deduced from \mathcal{T}^F.

Jared Ruiz Advised by Dr. Steven Kent

The Mathematics of Special Relativity
Usually we think of the topology on \mathbb{R}^4 as the standard Euclidean topology \mathcal{T}.

Physically, this topology is not useful because:

1. The 4-dimensional Euclidean topology is locally homogeneous, yet \mathbb{M} is not (the light cone separates timelike and spacelike events).

2. The group of all homeomorphisms of \mathbb{R}^4 include mappings of no physical significance.

Two properties which \mathcal{T}^F will satisfy are:

1*. \mathcal{T}^F is not locally homogenous, and the light cone through any point can be deduced from \mathcal{T}^F.

2*. The group of all homeomorphisms of the fine topology is generated by the inhomogeneous Lorentz group and dilatations.
Definition

Define the group G to be the group consisting of:

1. The Lorentz group \mathcal{L}.
2. Translations ($X' = X + K$ where $K \in \mathbb{M}$ is constant).
3. Multiplication by a scalar, or dilatations ($X' = \alpha X$ for $\alpha \in \mathbb{R}$).
Definition

Define the group G to be the group consisting of:
1. The Lorentz group \mathcal{L}.
2. Translations ($X' = X + K$ where $K \in \mathbb{M}$ is constant).
3. Multiplication by a scalar, or dilatations ($X' = \alpha X$ for $\alpha \in \mathbb{R}$).

Definition

Define the group G_0 to be the group consisting of:
1. The orthochronous Lorentz group \mathcal{L}_+.
2. Translations.
3. Dilatations.
Definition

The fine topology \mathcal{T}^F of \mathbb{M} induces the 1-dimensional Euclidean topology on $g^\mathbb{R}$ and the 3-dimensional topology on $g^\mathbb{R}^3$, where $g \in G$.
Definition

The fine topology \mathcal{T}^F of \mathbb{M} induces the 1-dimensional Euclidean topology on $g\mathbb{R}$ and the 3-dimensional topology on $g\mathbb{R}^3$, where $g \in G$. A set $U \in \mathbb{M}$ is open in \mathcal{T}^F \iff $U \cap g\mathbb{R}$ is open in $g\mathbb{R}$, and $U \cap g\mathbb{R}^3$ is open in $g\mathbb{R}^3$.

ϵ-neighborhoods in \mathcal{T}^F are $N_{\mathcal{F}} \epsilon(x) = N_{\mathcal{E}} \epsilon(x) \cap (C_{\mathcal{T}}(x) \cup C_{\mathcal{S}}(x))$
where $x \in \mathbb{M}$.

The Mathematics of Special Relativity
Definition

The fine topology T^F of \mathbb{M} induces the 1-dimensional Euclidean topology on $g^\mathbb{R}$ and the 3-dimensional topology on $g^\mathbb{R}^3$, where $g \in G$. A set $U \in \mathbb{M}$ is open in T^F \iff $U \cap g^\mathbb{R}$ is open in $g^\mathbb{R}$, and $U \cap g^\mathbb{R}^3$ is open in $g^\mathbb{R}^3$.

The ϵ-neighborhoods in T are $N^E_\epsilon(x) = \{y : d(x, y) < \epsilon\}$.
Definition

The fine topology \mathcal{T}^F of \mathbb{M} induces the 1-dimensional Euclidean topology on $g\mathbb{R}$ and the 3-dimensional topology on $g\mathbb{R}^3$, where $g \in G$. A set $U \in \mathbb{M}$ is open in $\mathcal{T}^F \iff U \cap g\mathbb{R}$ is open in $g\mathbb{R}$, and $U \cap g\mathbb{R}^3$ is open in $g\mathbb{R}^3$.

The ϵ-neighborhoods in \mathcal{T} are $N^E_\epsilon(x) = \{y : d(x, y) < \epsilon\}$.

Definition

We define the ϵ-neighborhoods in \mathcal{T}^F as

$$N^F_\epsilon(x) = N^E_\epsilon(x) \cap \left(C^T(x) \cup C^S(x) \right)$$

where $x \in \mathbb{M}$.
Theorem

\(N_\epsilon^F (x) \) is open in \(T^F \).
Theorem

$N^F_\epsilon(x)$ is open in \mathcal{T}^F.

Proof: Let A be either the time axes or space axes. Then

$$N^F_\epsilon(x) \cap A = \begin{cases} & \text{if } x \in A \\ & \text{if } x \notin A \end{cases}$$
Theorem

$N^F_\epsilon(x)$ is open in T^F.

Proof: Let A be either the time axes or space axes. Then

$$N^F_\epsilon(x) \cap A = \begin{cases}
N^E_\epsilon(x) \cap A & \text{if } x \in A \\
& \text{otherwise}
\end{cases}$$
Theorem

$N^F_{\epsilon}(x)$ is open in \mathcal{T}^F.

Proof: Let A be either the time axes or space axes. Then

$$N^F_{\epsilon}(x) \cap A = \begin{cases}
N^E_{\epsilon}(x) \cap A & \text{if } x \in A \\
(N^E_{\epsilon}(x) \setminus C^L(x)) \cap A & \text{if } x \notin A
\end{cases}$$
Theorem

$N^F_\epsilon (x)$ is open in \mathcal{T}^F.

Proof: Let A be either the time axes or space axes. Then

$$N^F_\epsilon (x) \cap A = \begin{cases} N^E_\epsilon (x) \cap A & \text{if } x \in A \\ (N^E_\epsilon (x) \setminus C^L(x)) \cap A & \text{if } x \notin A \end{cases}$$
Theorem

$N^F_\epsilon(x)$ is open in \mathcal{T}^F.

Proof: Let A be either the time axes or space axes. Then

$$N^F_\epsilon(x) \cap A = \begin{cases}
N^E_\epsilon(x) \cap A & \text{if } x \in A \\
(N^E_\epsilon(x) \setminus C^L(x)) \cap A & \text{if } x \notin A
\end{cases}$$
The group of all homeomorphisms of T^F is G.

Proof:

T^F is defined invariantly under G, so every $g \in G$ is a homeomorphism.

Now we have to show every homeomorphism $h : (M, T^F) \to (M, T^F)$ is in G.

Now let $g \in G$ be the element corresponding to time reflection.

Lemma

Let $h : (M, T^F) \to (M, T^F)$ be a homeomorphism. Then h either preserves the partial ordering or reverses it.

So either h or gh preserves the partial ordering, and is an element of G_0.

The group of all homeomorphisms is thus generated by g and G_0, which is G.2
First Result

Theorem

The group of all homeomorphisms of T^F is G.

Proof: T^F is defined invariantly under G, so every $g \in G$ is a homeomorphism.

Now we have to show every homeomorphism $h: (M, T^F) \rightarrow (M, T^F)$ is in G.

Now let $g \in G$ be the element corresponding to time reflection.

Lemma: Let $h: (M, T^F) \rightarrow (M, T^F)$ be a homeomorphism. Then h either preserves the partial ordering or reverses it.

So either h or gh preserves the partial ordering, and is an element of G_0.

The group of all homeomorphisms is thus generated by g and G_0, which is G.

Jared Ruiz
Advised by Dr. Steven Kent
The Mathematics of Special Relativity
First Result

Theorem

The group of all homeomorphisms of \mathcal{T}^F is G.

Proof: \mathcal{T}^F is defined invariantly under G, so every $g \in G$ is a homeomorphism.
First Result

Theorem

The group of all homeomorphisms of \mathcal{T}^F is G.

Proof: \mathcal{T}^F is defined invariantly under G, so every $g \in G$ is a homeomorphism. Now we have to show every homeomorphism $h : (\mathbb{M}, \mathcal{T}^F) \rightarrow (\mathbb{M}, \mathcal{T}^F)$ is in G.

Now let $g \in G$ be the element corresponding to time reflection.

Lemma

Let $h : (\mathbb{M}, \mathcal{T}^F) \rightarrow (\mathbb{M}, \mathcal{T}^F)$ be a homeomorphism. Then h either preserves the partial ordering or reverses it. So either h or gh preserves the partial ordering, and is an element of G_0.

The group of all homeomorphisms is thus generated by g and G_0, which is G.

Jared Ruiz
Advised by Dr. Steven Kent
First Result

Theorem

The group of all homeomorphisms of \(T^F \) is \(G \).

Proof: \(T^F \) is defined invariantly under \(G \), so every \(g \in G \) is a homeomorphism. Now we have to show every homeomorphism \(h : (\mathcal{M}, T^F) \rightarrow (\mathcal{M}, T^F) \) is in \(G \).

Now let \(g \in G \) be the element corresponding to time reflection.

Lemma

Let \(h : (\mathcal{M}, T^F) \rightarrow (\mathcal{M}, T^F) \) be a homeomorphism. Then \(h \) either preserves the partial ordering or reverses it.
Theorem

The group of all homeomorphisms of \mathcal{T}^F is G.

Proof: \mathcal{T}^F is defined invariantly under G, so every $g \in G$ is a homeomorphism. Now we have to show every homeomorphism $h : (\mathbb{M}, \mathcal{T}^F) \rightarrow (\mathbb{M}, \mathcal{T}^F)$ is in G.

Now let $g \in G$ be the element corresponding to time reflection.

Lemma

Let $h : (\mathbb{M}, \mathcal{T}^F) \rightarrow (\mathbb{M}, \mathcal{T}^F)$ be a homeomorphism. Then h either preserves the partial ordering or reverses it.

So either h or gh preserves the partial ordering, and is an element of G_0.
Theorem

The group of all homeomorphisms of \mathcal{T}^F is G.

Proof: \mathcal{T}^F is defined invariantly under G, so every $g \in G$ is a homeomorphism. Now we have to show every homeomorphism $h : (\mathbb{M}, \mathcal{T}^F) \rightarrow (\mathbb{M}, \mathcal{T}^F)$ is in G.

Now let $g \in G$ be the element corresponding to time reflection.

Lemma

Let $h : (\mathbb{M}, \mathcal{T}^F) \rightarrow (\mathbb{M}, \mathcal{T}^F)$ be a homeomorphism. Then h either preserves the partial ordering or reverses it.

So either h or gh preserves the partial ordering, and is an element of G_0.

The group of all homeomorphisms is thus generated by g and G_0, which is G. □
Second Result

Corollary

The light, time, and space cones through a point can be deduced from the topology.
The light, time, and space cones through a point can be deduced from the topology.

Proof: For $x \in M$, let G_x be the group of homeomorphisms which fix x.

Corollary
The light, time, and space cones through a point can be deduced from the topology.

Proof: For $x \in M$, let G_x be the group of homeomorphisms which fix x. By the theorem, G_x is generated by the Lorentz group and dilatations.
Corollary

The light, time, and space cones through a point can be deduced from the topology.

Proof: For $x \in M$, let G_x be the group of homeomorphisms which fix x. By the theorem, G_x is generated by the Lorentz group and dilatations. Therefore there are exactly four orbits under G_x: $C^L(x) \setminus x$, $C^T(x) \setminus x$, $C^S(x) \setminus x$, the point x. □
Assumed Einstein's Two Postulates.

Bondi's k-factor.

Gamma factor $\gamma(v) = \sqrt{1 - \frac{v^2}{c^2}}$.

Lorentz Boost L and Lorentz Transformation L.

Invariance of the Interval.

Inner Product g.

Predictions (simultaneity, Lorentz Contraction, mass, etc.).

Cones.

Defined Lorentz group L and L^+.

Defined fine topology T_F on M.

All mappings considered are in the Lorentz group.
Assumed Einstein’s Two Postulates.
Assumed Einstein’s Two Postulates.

Bondi’s k-factor.
- Assumed Einstein’s Two Postulates.
- Bondi’s k-factor.
- Gamma factor $\gamma(v) = \frac{1}{\sqrt{1 - (v/c)^2}}$.

\[L^\nu_{\lambda} \quad \text{and} \quad L^\nu_{\lambda} + \]

\[\text{Invariance of the Interval.} \]

\[\text{Inner Product} \]

\[g. \]

\[\text{Predictions (simultaneity, Lorentz Contraction, mass, etc.).} \]

\[\text{Cones.} \]

\[\text{Defined Lorentz group} \quad L \quad \text{and} \quad L^+. \]

\[\text{Defined fine topology} \quad T \\ F \quad \text{on} \quad M. \]

\[\text{All mappings considered are in the Lorentz group.} \]
- Assumed Einstein’s Two Postulates.
- Bondi’s k-factor.
- Gamma factor $\gamma(v) = \frac{1}{\sqrt{1 - (v/c)^2}}$.
- Lorentz Boost L_V and Lorentz Transformation L.

The Mathematics of Special Relativity

Jared Ruiz Advised by Dr. Steven Kent
Assumed Einstein’s Two Postulates.
Bondi’s k-factor.
Gamma factor $\gamma(v) = \frac{1}{\sqrt{1 - (v/c)^2}}$.
Lorentz Boost L_V and Lorentz Transformation L.
Invariance of the Interval.
- Assumed Einstein’s Two Postulates.
- Bondi’s k-factor.
- Gamma factor $\gamma(v) = \frac{1}{\sqrt{1 - (v/c)^2}}$.
- Lorentz Boost L_V and Lorentz Transformation L.
- Invariance of the Interval.
- Inner Product g.
• Assumed Einstein’s Two Postulates.
• Bondi’s k-factor.
• Gamma factor $\gamma(v) = \frac{1}{\sqrt{1 - (v/c)^2}}$.
• Lorentz Boost L_V and Lorentz Transformation L.
• Invariance of the Interval.
• Inner Product g.
• Predictions (simultaneity, Lorentz Contraction, mass, etc.).
Assumed Einstein’s Two Postulates.

Bondi’s k-factor.

Gamma factor $\gamma(v) = \frac{1}{\sqrt{1 - (v/c)^2}}$.

Lorentz Boost L_V and Lorentz Transformation L.

Invariance of the Interval.

Inner Product g.

Predictions (simultaneity, Lorentz Contraction, mass, etc.).

Cones.
• Assumed Einstein’s Two Postulates.
• Bondi’s k-factor.
• Gamma factor $\gamma(v) = \frac{1}{\sqrt{1 - (v/c)^2}}$.
• Lorentz Boost L_V and Lorentz Transformation L.
• Invariance of the Interval.
• Inner Product g.
• Predictions (simultaneity, Lorentz Contraction, mass, etc.).
• Cones.
• Defined Lorentz group \mathcal{L} and \mathcal{L}_+.
Assumed Einstein’s Two Postulates.
Bondi’s k-factor.
Gamma factor $\gamma(v) = \frac{1}{\sqrt{1 - (v/c)^2}}$.
Lorentz Boost L_V and Lorentz Transformation L.
Invariance of the Interval.
Inner Product g.
Predictions (simultaneity, Lorentz Contraction, mass, etc.).
Cones.
Defined Lorentz group \mathcal{L} and \mathcal{L}_+.
Definined fine topology \mathcal{T}^F on \mathbb{M}.
- Assumed Einstein’s Two Postulates.
- Bondi’s k-factor.
- Gamma factor $\gamma(v) = \frac{1}{\sqrt{1 - (v/c)^2}}$.
- Lorentz Boost L_V and Lorentz Transformation L.
- Invariance of the Interval.
- Inner Product g.
- Predictions (simultaneity, Lorentz Contraction, mass, etc.).
- Cones.
- Defined Lorentz group \mathcal{L} and \mathcal{L}_+.
- Defined fine topology \mathcal{T}^F on \mathbb{M}.
- All mappings considered are in the Lorentz group.
References