Compatible circuits in colored eulerian digraphs

James Carraher
University of Nebraska – Lincoln

s-jcarrah1@math.unl.edu
Joint Work with Stephen Hartke

October 1, 2013
Seven Bridges of Königsberg

Question: Can you find a walk that crosses each bridge once and exactly once?

Euler proved that such a walk does not exist.
Seven Bridges of Königsberg

Question: Can you find a walk that crosses each bridge once and exactly once?

Euler proved that such a walk does not exist.
Eulerian graphs

Def. An *eulerian graph* is a graph G that contains a closed walk that visits each edge exactly once. Such a walk is called an *eulerian circuit*.

Thm. A graph G is eulerian if and only if the degree of each vertex is even and G is connected.
Def. An *eulerian graph* is a graph G that contains a closed walk that visits each edge exactly once. Such a walk is called an *eulerian circuit*.

Thm. A graph G is eulerian if and only if the degree of each vertex is even and G is connected.
Def. An *eulerian digraph* G is a directed graph or digraph (edges have directions like one way streets) that contains a closed walk that visits each edge exactly once.

Thm. A digraph G is eulerian if and only if $\text{deg}^- (v) = \text{deg}^+ (v)$ for all vertices v and G is strongly (weakly) connected.
Def. An *eulerian digraph* G is a directed graph or digraph (edges have directions like one way streets) that contains a closed walk that visits each edge exactly once.

Thm. A digraph G is eulerian if and only if $\deg^-(v) = \deg^+(v)$ for all vertices v and G is strongly (weakly) connected.
Eulerian graphs and eulerian digraphs have many applications in routing problems such as garbage collecting, mail routes, etc.

Question: Can you find an eulerian circuit that avoid U-turns in the following digraph?
Applications

Eulerian graphs and eulerian digraphs have many applications in routing problems such as garbage collecting, mail routes, etc.

Question: Can you find an eulerian circuit that avoid U-turns in the following digraph?

How can we determine if there is such a circuit?
Compatible circuits

Def. A *colored eulerian digraph* G is an eulerian digraph with a fixed edge coloring (not necessarily proper).

A *compatible circuit* is an eulerian circuit of G such that no two consecutive edges in the tour have the same color (i.e. no monochromatic transitions).
Compatible circuits

Def. A *colored eulerian digraph* G is an eulerian digraph with a fixed edge coloring (not necessarily proper).

A *compatible circuit* is an eulerian circuit of G such that no two consecutive edges in the tour have the same color (i.e. no monochromatic transitions).

![Diagram of compatible circuits](image)

- **Good:** The circuit does not have two consecutive edges of the same color.
- **Bad:** The circuit does have two consecutive edges of the same color.
Can you find an eulerian circuit that avoids U-turns?
Can you find an eulerian circuit that avoids U-turns?
Can you find an eulerian circuit that avoids U-turns?
Examples

Big Question: When does an colored eulerian digraph have a compatible circuit?

Not all graphs have compatible circuits.
Simple necessary condition

Let $\gamma(\nu)$ be the size of the largest color class incident to ν.
Let $\gamma(\nu)$ be the size of the largest color class incident to ν.

Prop. If there exists a vertex ν where $\gamma(\nu) > \deg^+(\nu)$, then G does not have a compatible circuit.
Simple necessary condition

Let $\gamma(\nu)$ be the size of the largest color class incident to ν.

Prop. If there exists a vertex ν where $\gamma(\nu) > \deg^+(\nu)$, then G does not have a compatible circuit.

Ex.
Simple necessary condition

Let $\gamma(v)$ be the size of the largest color class incident to v.

Prop. If there exists a vertex v where $\gamma(v) > \deg^+(v)$, then G does not have a compatible circuit.

Ex.
Undirected eulerian graphs

Thm. [Kotzig 1968] Let G be a colored eulerian *undirected graph*. The graph G has a compatible circuit if and only if $\gamma(v) \leq \deg(v)/2$ for all vertices v.
Thm. [Kotzig 1968] Let G be a colored eulerian undirected graph. The graph G has a compatible circuit if and only if $\gamma(v) \leq \text{deg}(v)/2$ for all vertices v.

A colored eulerian digraph with $\gamma(v) \leq \text{deg}^+(v)$ does not necessarily have a compatible circuit.
Thm. [Kotzig 1968] Let G be a colored eulerian *undirected* graph. The graph G has a compatible circuit if and only if $\gamma(v) \leq \text{deg}(v)/2$ for all vertices v.

A colored eulerian digraph with $\gamma(v) \leq \text{deg}^+(v)$ does not necessarily have a compatible circuit.
Splitting vertices

We split vertices v where $\gamma(v) = \deg^+(v)$.
Splitting vertices

We split vertices v where $\gamma(v) = \text{deg}^+(v)$.

The graph G has a compatible circuit if and only if the graph G' after splitting has a compatible circuit.
Splitting vertices

We split vertices v where $\gamma(v) = \deg^+(v)$.

The graph G has a compatible circuit if and only if the graph G' after splitting has a compatible circuit.
Splitting vertices

We split vertices v where $\gamma(v) = \deg^+(v)$.

The graph G has a compatible circuit if and only if the graph G' after splitting has a compatible circuit.
Splitting vertices

We split vertices v where $\gamma(v) = \text{deg}^+(v)$.

The graph G has a compatible circuit if and only if the graph G' after splitting has a compatible circuit.

Henceforth, we may assume that $\gamma(v) < \text{deg}^+(v)$ for all v.
Def. Let T be an eulerian circuit of G and v a vertex of G. An *excursion* in T is the walk between consecutive visits to v. The *excursion graph* $L_T(v)$ tracks the entering and exiting edges of the excursions at v.
Def. Let T be an eulerian circuit of G and v a vertex of G. An *excursion* in T is the walk between consecutive visits to v. The *excursion graph* $L_T(v)$ tracks the entering and exiting edges of the excursions at v.
We want to remove monochromatic transitions of T at v by rearranging the excursions at v.

Let M be any matching between E^+ and E^-, and let $L_M(v)$ be the implied excursion graph. A vertex v is fixable if $L_M(v)$ has a compatible circuit for any matching M between E^+ and E^-.

![Diagram](image_url)
Fixable vertices

We want to remove monochromatic transitions of T at v by rearranging the excursions at v.

Def. Let M be any matching between $E^+(v)$ and $E^-(v)$, and let $L_M(v)$ be the implied excursion graph.

A vertex v is *fixable* if $L_M(v)$ has a compatible circuit for any matching M between $E^+(v)$ and $E^-(v)$.
Def. Let M be any matching between $E^+(v)$ and $E^-(v)$, and let $L_M(v)$ be the implied excursion graph.

A vertex v is **fixable** if $L_M(v)$ has a compatible circuit for any matching M between $E^+(v)$ and $E^-(v)$.

Prop. If every vertex is fixable, then G has a compatible circuit.

Proof. Pick a (not necessarily compatible) eulerian circuit T of G. Iteratively fix fixable vertices. The resulting circuit is compatible. ■
Def. Let M be any matching between $E^+(v)$ and $E^-(v)$, and let $L_M(v)$ be the implied excursion graph.

A vertex v is **fixable** if $L_M(v)$ has a compatible circuit for *any* matching M between $E^+(v)$ and $E^-(v)$.

Prop. If every vertex is fixable, then G has a compatible circuit.
Def. Let M be any matching between $E^+(v)$ and $E^-(v)$, and let $L_M(v)$ be the implied excursion graph.

A vertex v is *fixable* if $L_M(v)$ has a compatible circuit for *any* matching M between $E^+(v)$ and $E^-(v)$.

Prop. If every vertex is fixable, then G has a compatible circuit.

Proof.
Pick a (not necessarily compatible) eulerian circuit T of G. Iteratively fix fixable vertices. The resulting circuit is compatible.

\[
\boxed{}
\]
Prop. A vertex is fixable unless \(\gamma(v) = \deg^+(v) - 1 \) and there are 2 color classes of size \(\gamma(v) \) with both in and out edges, and the other two edges are one incoming and one outgoing.
Prop. A vertex is fixable unless $\gamma(v) = \deg^+(v) - 1$ and there are 2 color classes of size $\gamma(v)$ with both in and out edges, and the other two edges are one incoming and one outgoing.

Ex. The excursion graph $L_M(v)$ has no compatible circuit.
Prop. A vertex is fixable unless $\gamma(v) = \deg^+(v) - 1$ and there are 2 color classes of size $\gamma(v)$ with both in and out edges, and the other two edges are one incoming and one outgoing.

Proof sketch when $\gamma(v) < \deg^+(v) - 1$.
Fix a matching M from $E^+(v)$ to $E^-(v)$.
Construct a digraph F whose vertices are excursions.
An edge u to v in F indicates the last edge of u has a different color than the first edge of v.

![Diagram](image-url)
Prop. A vertex is fixable unless $\gamma(v) = \deg^+(v) - 1$ and there are 2 color classes of size $\gamma(v)$ with both in and out edges, and the other two edges are one incoming and one outgoing.

Proof sketch when $\gamma(v) < \deg^+(v) - 1$.

Then a hamiltonian cycle in F corresponds to a compatible circuit in $L_M(v)$. Apply Meyniel’s Theorem to show F is hamiltonian.

Meyniel’s Thm is the analogue of Ore’s Thm for digraphs.
Nonfixable vertices

Let S be the set of vertices that are not fixable. Let S_3 be the subset of S with vertices of outdegree three.

We will consider colored eulerian digraphs with no nonfixable vertices of outdegree three.
Splitting nonfixable vertices

We form a new graph G_S by splitting each of the nonfixable vertices into three new vertices.

Compatible circuits through G can insert v_1 into v_2 or v_3, but v_2 and v_3 cannot be combined.
Splitting nonfixable vertices

We form a new graph G_S by splitting each of the nonfixable vertices into three new vertices.

A compatible circuit through v can insert v_1 into v_2 or v_3, but v_2 and v_3 cannot be combined.

Can we glue vertices so that the whole graph is connected?
The component graph H_G has components of G as vertices. For each $\nu_1 \in S$, put an edge in H_G between $D_1 \ni \nu_1$ and $D_2 \ni \nu_2$ and an edge between $D_1 \ni \nu_1$ and $D_3 \ni \nu_3$.
The component graph \(H_G \) has components of \(G_S \) as vertices. For each \(v \in S \), put an edge in \(H_G \) between \(D_1 \ni v_1 \) and \(D_2 \ni v_2 \) and an edge between \(D_1 \ni v_1 \) and \(D_3 \ni v_3 \).
Rainbow spanning trees

Prob. The edge set of H_G is the disjoint union of 2-trails. Does there exist a subset E' of the edges such that

1. E' contains at most one edge from each 2-trail, and
2. the spanning subgraph with edge set E' is connected?

If so, then H_G contains a *rainbow spanning tree*.
Rainbow spanning trees

Prob. The edge set of H_G is the disjoint union of 2-trails. Does there exist a subset E' of the edges such that

1. E' contains at most one edge from each 2-trail, and
2. the spanning subgraph with edge set E' is connected?

If so, then H_G contains a *rainbow spanning tree*.
Thm. Let G be a colored eulerian digraph with no nonfixable vertices of outdegree three.
Then G has a compatible circuit if and only if the component graph H_G contains a rainbow spanning tree.
Thm. Let G be a colored eulerian digraph with no nonfixable vertices of outdegree three.
Then G has a compatible circuit if and only if the component graph H_G contains a rainbow spanning tree.
Rainbow spanning trees

Prop. [Broersma and Li 1997; Schrijver 2003; Suzuki 2006] A multigraph H has a *rainbow spanning tree* if and only if for any partition π of $V(H)$,

\[
(#\text{colors between the parts}) \geq (#\text{parts in } \pi) - 1.
\]
Rainbow spanning trees

Prop. [Broersma and Li 1997; Schrijver 2003; Suzuki 2006] A multigraph H has a *rainbow spanning tree* if and only if for any partition π of $V(H)$,

$$(\text{#colors between the parts}) \geq (\text{#parts in } \pi) - 1.$$

One proof uses the Matroid Intersection Theorem.

There is a polynomial-time algorithm to determine if a multigraph H contains a rainbow spanning tree.
Thm. Let G be a colored eulerian digraph with no nonfixable vertices of outdegree three.
Then G has a compatible circuit if and only if the component graph H_G contains a rainbow spanning tree.

Thm. Let G be a colored eulerian digraph with no nonfixable vertices of outdegree three.
There is a polynomial-time algorithm to determine if G has a compatible circuit, and to produce a compatible circuit if one exists.
Algorithm

\[G \]

\[H_G \]

\[G' \]

\[G_S \]

\[D_1 \]

\[D_2 \]

\[D_3 \]
Difficulty with S_3 vertices

The difficulty with nonfixable vertices of outdegree 3.

G

G_S

G'_S
We checked many eulerian digraphs where all the vertices are in S_3 to find patterns and examples. For many of the graphs we looked at exactly half the colorings have a compatible circuit and the other half do not. Some graphs have less than half the colorings give a compatible circuit.

In some special cases we can characterize when a graph has a compatible circuit.
Consider an edge-coloring of a graph G where the head and tail can receive different colors. Throughout the rest of this talk G only has vertices in S_3.

Def. A pseudocompatible circuit of G is an eulerian circuit, where the transitions at each vertex are either all monochromatic or none of them are.
Consider an edge-coloring of a graph G where the head and tail can receive different colors. Throughout the rest of this talk G only has vertices in S_3.

![Graph with colored edges](image-url)
Variation

Consider an edge-coloring of a graph G where the head and tail can receive different colors. Throughout the rest of this talk G only has vertices in S_3.

Def. A *pseudocompatible circuit* of G is an eulerian circuit, where the transitions at each vertex are either all monochromatic or none of them are.
Pseudocompatible Circuits

Lemma If G has a pseudocompatible circuit, then G has a compatible circuit.
Lemma If \(G \) has a pseudocompatible circuit, then \(G \) has a compatible circuit.

Think about the excursion graph at a vertex \(L_T(v) \), where \(T \) is the pseudocompatible circuit.
Lemma If G has a pseudocompatible circuit, then G has a compatible circuit.

Think about the excursion graph at a vertex $L_T(v)$, where T is the pseudocompatible circuit.

If v has 3 monochromatic transitions, then $L_T(v)$ is one of the two top right graphs.
Rotations and Reflections

Let G be an colored eulerian digraph, where all the vertices are in S_3. We describe two simple ways of changing the edge-coloring of G.
Rotations and Reflections

Let G be an colored eulerian digraph, where all the vertices are in S_3. We describe two simple ways of changing the edge-coloring of G.

A *rotation* at v:
Let G be an colored eulerian digraph, where all the vertices are in S_3. We describe two simple ways of changing the edge-coloring of G.

A *rotation* at v:
Rotations and Reflections

Let G be an colored eulerian digraph, where all the vertices are in S_3. We describe two simple ways of changing the edge-coloring of G.

A *rotation* at v:
Rotations and Reflections

Let G be an colored eulerian digraph, where all the vertices are in S_3. We describe two simple ways of changing the edge-coloring of G.

A *reflection* at v:
Rotations and Reflections

Let G be an colored eulerian digraph, where all the vertices are in S_3. We describe two simple ways of changing the edge-coloring of G.

A *reflection* at v:
Rotations and Reflections

Let G be an colored eulerian digraph, where all the vertices are in S_3. We describe two simple ways of changing the edge-coloring of G.

A \textit{reflection} at v:

![Reflections diagram]

\begin{align*}
\text{Reflections} & \quad R & R & G \\
& \quad B & G & B \\
& \quad G & B & R
\end{align*}
Rotations and Reflections

Let G be an colored eulerian digraph, where all the vertices are in S_3. We describe two simple ways of changing the edge-coloring of G.

A *reflection* at v:
Prop. If G has a compatible circuit then applying a rotation to a vertex v gives a new edge-coloring that also has a compatible circuit.
Prop. If G has a compatible circuit then applying a rotation to a vertex v gives a new edge-coloring that also has a compatible circuit.
Prop. If G has a compatible circuit then applying a rotation to a vertex v gives a new edge-coloring that also has a compatible circuit.
Prop. If G has a compatible circuit then applying a rotation to a vertex v gives a new edge-coloring that also has a compatible circuit.
Prop. If G has a compatible circuit then applying a rotation to a vertex v gives a new edge-coloring that also has a compatible circuit.
Let G be an eulerian digraph where all the vertices are nonfixable vertices of outdegree 3.

We construct a component graph by splitting each vertex in the following way.
Let G be an eulerian digraph where all the vertices are nonfixable vertices of outdegree 3.

We construct a component graph by splitting each vertex in the following way.
Let G be an eulerian digraph where all the vertices are nonfixable vertices of outdegree 3.

We construct a component graph by splitting each vertex in the following way.
Prop. If \(G_S \) has an even number of components then \(G \) does not have a compatible circuit.
Prop. If G_S has an even number of components then G does not have a compatible circuit.
Prop. If G_S has an even number of components then G does not have a compatible circuit.
Prop. If G_S has an even number of components then G does not have a compatible circuit.
Prop. If G_S has an even number of components then G does not have a compatible circuit.
Prop. If G_S has an even number of components then G does not have a compatible circuit.
Prop. If G_S has an even number of components then G does not have a compatible circuit.
Prop. If G_S has an even number of components then G does not have a compatible circuit.
Prop. If G_S has an even number of components then G does not have a compatible circuit.
Prop. If G_S has an even number of components then G does not have a compatible circuit.
Prop. At least half the edge-colorings of G do not have a compatible circuit.
Prop. At least half the edge-colorings of G do not have a compatible circuit.
Prop. At least half the edge-colorings of G do not have a compatible circuit.
Prop. At least half the edge-colorings of G do not have a compatible circuit.
Prop. At least half the edge-colorings of G do not have a compatible circuit.
Prop. At least half the edge-colorings of G do not have a compatible circuit.
Let G be a planar digraph where each face is a directed cycle.
Let G be a planar digraph where each face is a directed cycle.
Let G be a planar digraph where each face is a directed cycle.
Let G be a planar digraph where each face is a directed cycle.
A *spanning cactus* is a spanning subgraph of the component graph such that it has one edge of each dashed triangle and no cycles besides the 3-cycles from the solid triangles.
A *spanning cactus* is a spanning subgraph of the component graph such that it has one edge of each dashed triangle and no cycles besides the 3-cycles from the solid triangles.
A *spanning cactus* is a spanning subgraph of the component graph such that it has one edge of each dashed triangle and no cycles besides the 3-cycles from the solid triangles.
A *spanning cactus* is a spanning subgraph of the component graph such that it has one edge of each dashed triangle and no cycles besides the 3-cycles from the solid triangles.
Thm. If G is a planar digraphs where each face is a cycle, then G has a compatible circuit if and only if the component graph has a spanning cactus.
Thm. If G is a planar digraphs where each face is a cycle, then G has a compatible circuit if and only if the component graph has a spanning cactus.
Example

G

H_G
Other Questions

- Can be completely characterize when a graph has a compatible circuit?
- Can you find a spanning cactus in H_G in polynomial time?
- Edge-colored Chinese Postman Problem: For a noneulerian graph, minimize both total length of a walk and the number of monochromatic transitions.
- Can you characterize other generalizations or variations of this problem?

Thank You