An eulerian digraph is a graph that has a closed walk that visits each edge exactly once.

Applications: Eulerian circuits are used in routing problem (garbage collecting, mail routes, painting lines on roadways, checking parking meters, etc) as well as in bioinformatics to re-construct DNA sequences from its fragments.

Colored Eulerian Digraphs

Def. A colored eulerian digraph is an eulerian digraph with a fixed edge coloring. A compatible circuit is an eulerian circuit of G such that no two consecutive edges in the tour have the same color (i.e. no monochromatic transitions).

The Big Question

When does a colored eulerian digraph have a compatible circuit?

Graphs with no compatible circuits

Necessary Conditions

Def. Let $\gamma(v)$ be the size of the largest color class at v.

Note: If $\gamma(v) > \text{deg}^+(v)$ then G has no compatible circuit.

Thm. [Kotzig, 1968] If G is a colored eulerian undirected graph and $\gamma(v) \leq \text{deg}(v)/2$ then G has a compatible circuit.

This condition is not sufficient for digraphs.

Splitting Procedure when $\gamma(v) = \text{deg}^+(v)$

Fixable Vertices

Let T be an eulerian trail of G and v a vertex. Let S_1, S_2, \ldots, S_d be the segments of the trail between occurrences of v. The segments S_1, \ldots, S_d are called excursions.

Def. A vertex v is fixable if and only if it does not have the form:

$Idea$ Iteratively fix at each vertex.

Prop. If every vertex is fixable then G contains a compatible circuit.

Prop. A vertex is fixable if and only if it does not have the form:

Rainbow Spanning trees

Problem: Let H be a multigraph whose edge set is the disjoint union of 2-trails. Does there exist a subset E' of the edges such that

1. E' contains at most one edge from each 2-trail, and
2. the spanning subgraph with edge set E' is connected?

If H has such a subset we say H has a rainbow spanning tree.

Bibliography

Joint work with Stephen G. Hartke. Partial support by NSF Grant DMS-0914815.