Quiz 8

1. Set up a triple integral which gives the volume of the solid bounded below by the plane \(z = 0 \), above by the sphere \(x^2 + y^2 + z^2 = 4 \) and on the sides by the cylinder \(x^2 + y^2 = 1 \). You do not need to integrate.

Solution This is easiest to do in cylindrical coordinates. The \(z \) limits are 0 and \(\sqrt{4 - r^2} \). Projecting down onto the \(xy \)-plane we get a circle of radius 1. So the integral is

\[
\int_0^1 \int_0^{2\pi} \int_0^{\sqrt{4 - r^2}} r \, dz \, d\theta \, dr.
\]

2. Find the volume of the solid enclosed by the cone \(z = \sqrt{x^2 + y^2} \) and between the planes \(z = 1 \) and \(z = 2 \).

Solution

There are (at least) three ways to do this one. One way is in spherical coordinates, but the \(\rho \)-limits are a little messy. The other two ways are in cylindrical coordinates. I’ll do both ways.

For the first one, we integrate with respect to \(z \) first. We have to break it up into two integrals. Above the circle \(r = 1 \), \(z \) enters the region at \(z = 1 \) and leaves at \(z = 2 \). Above the region inside \(r = 2 \) and outside \(r = 1 \), \(z \) enters the region at \(z = r \) and leaves at \(z = 2 \). Thus the volume is given by

\[
\int_0^1 \int_0^{2\pi} \int_1^2 r \, dz \, d\theta \, dr + \int_1^2 \int_0^{2\pi} \int_0^2 r \, dz \, d\theta \, dr = \frac{7\pi}{3}.
\]

The second way, we integrate with respect to \(r \) first. The \(r \) limits go from 0 to \(z \). Then the \(z \) limits are 1 to 2 and the \(\theta \) limits are 0 to \(2\pi \). We get

\[
\int_0^{2\pi} \int_1^2 \int_0^z r \, dr \, dz \, d\theta = \frac{7\pi}{3}.
\]