Quiz 1

1. Consider the vectors \mathbf{AB}, \mathbf{AC} connecting the points $A = (-1, 0), B = (2, 1), C = (1, -2)$ (recall that A is the tail of \mathbf{AB}). Find the angle between the vectors \mathbf{AB}, \mathbf{AC}.

 Solution

 We first find the vectors: $\mathbf{AB} = (3, 1), \mathbf{AC} = (2, -2)$. The angle between these two vectors is

 $$\theta = \cos^{-1} \left(\frac{\mathbf{AB} \cdot \mathbf{AC}}{|\mathbf{AB}| |\mathbf{AC}|} \right) = \cos^{-1} \left(\frac{1}{\sqrt{5}} \right)$$

2. Find the area of the triangle in \mathbb{R}^3 formed by the three points $P = (-2, 2, 0), Q = (0, 1, -1), R = (-1, 2, -2)$.

 Solution

 Set $\mathbf{u} = (2, -1, -1)$ the vector from P to Q and $\mathbf{v} = (1, 0, -2)$ the vector from P to R. We first compute

 $$\mathbf{u} \times \mathbf{v} = \begin{bmatrix} i & j & k \\ 2 & -1 & -1 \\ 1 & 0 & -2 \end{bmatrix} = 2i + 3j + k.$$

 The area of the triangle is

 $$A = \frac{1}{2} |\mathbf{u} \times \mathbf{v}| = \frac{1}{2} (\sqrt{4 + 9 + 1}) = \frac{\sqrt{14}}{2}.$$