1. (10 pts) Let a tournament be an orientation of the complete graph on \(n \) vertices: that is, every pair \(i, j \in \{1, \ldots, n\} \) with \(i \neq j \) has exactly one of the edges \(i \rightarrow j \) or \(j \rightarrow i \). Let the \(\binom{n}{2} \) variables \(x_{i,j} \) be given by these pairs with \(i < j \) with

\[
x_{i,j} = \begin{cases}
1 & \text{if } i \rightarrow j \text{ is an edge} \\
0 & \text{if } j \rightarrow i \text{ is an edge}
\end{cases}.
\]

Let \(N = \binom{n}{2} \) and \(f : \{0,1\}^N \rightarrow \{0,1\} \) be the function

\[
f(x) = \begin{cases}
1 & \text{there is a vertex } i \text{ where } i \rightarrow j \text{ is an edge for all } j \neq i \\
0 & \text{otherwise}
\end{cases}.
\]

(Tournaments can be thought of describing a round-robin competition among \(n \) teams, where every team plays every other team exactly once and no ties are allowed. Then, \(i \rightarrow j \) implies that team \(i \) beat team \(j \). The function \(f \) has value 1 if and only if there is some team that beat all the other teams [i.e. an all-around champion]. Feel free to use this description instead of vertices and edges.)

Prove that \(D(f) \leq 2n \approx \frac{1}{4} \sqrt{N} \).

(Bonus 5pts) Prove that \(D(f) \leq 2n - \lceil \log n \rceil \).

2. (10 pts) Let \(f : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\} \) be a function on \(2n \) variables. Prove that if \(f \) has a fooling set of size \(M \) then the communication complexity of \(f \) is at least \(\log M \).

(Hint: Bound the number of possible exchanges of information and use the pigeonhole principle.)