1. (15 pts) Suppose someone claimed that $\text{RL} = \text{NL}$ by the following argument:

"Proof": We shall show that Reachability for directed acyclic graphs can be decided in randomized log-space with probability of success at least one half. Given G, s, t, randomly walk starting at s, selecting an outgoing neighbor uniformly at random at each step. If the walk reaches a vertex with no outgoing neighbor, start over at s. If there is a path from s to t, then eventually, the random walk should reach t. Therefore, there is a positive probability that the machine will accept. End "Proof"

Show this crackpot that they are wrong by demonstrating a directed acyclic graph on n vertices so that there is a path from s to t, but the expected number of random walks before reaching t is $\Omega(2^n)$. Conclude this algorithm is not an RL-type algorithm.

2. (15 pts) Let f be a function on $n = k^2$ variables that is the AND of k ORs, each of disjoint k variables. Prove $D(f) = n$ (where $D(f)$ is the decision tree complexity of f).

3. (15 pts; required for 824 students) Show that computing the permanent for matrices with integer entries is in $\text{FP}^\text{#SAT}$. Hint: Use the combinatorial interpretation of weighted cycle-covers from page 347.