1. (10pts) Suppose $L_1, L_2 \in \text{NP}$.
 (a) (5pts) Is $L_1 \cup L_2 \in \text{NP}$?
 (b) (5pts) Is $L_1 \cap L_2 \in \text{NP}$?

2. (10pts) In the CLIQUE problem, we are given an undirected graph G and an integer k and decide if there is a subset S of k vertices so that every pair $u, v \in S$ has uv as an edge of G (i.e. S is a clique):
 \[
 \text{CLIQUE} = \{[G], [k] : \exists S \subseteq V(G), |S| \geq k, S \text{ is a clique}\}.
 \]
 Prove that CLIQUE is NP-complete.

3. (10pts) In the VERTEXCOVER problem, we are given an undirected graph G and an integer k and have to decide whether there is a subset S of at most k vertices such that for every edge $uv \in E(G)$ at least one of u or v is in S (the k vertices cover the edge set):
 \[
 \text{VERTEXCOVER} = \{[G], [k] : \exists S \subseteq V(G), |S| \leq k, \forall uv \in E(G), S \cap \{u, v\} \neq \emptyset\}.
 \]
 Prove that VERTEXCOVER is NP-complete.

4. (Required for 824 students only; 15pts) Let $\Sigma_2\text{SAT}$ denote the following decision problem: Given a quantified formula ψ of the form
 \[
 \psi = \exists x \in \{0, 1\} \forall y \in \{0, 1\} \varphi(x, y) = 1,
 \]
 where φ is a CNF formula, decide whether ψ is true. That is, decide whether there exists an x so that for all y, $\varphi(x, y)$ is true.
 Prove that if $P = NP$, then $\Sigma_2\text{SAT}$ is in P.