The following topics are present in the 2004-2007 CSE Systems Quals.

1 Operating Systems

- Three-state process model
 - Transitions
 - Events to trigger transitions
- Threads
 - User-level
 - Kernel-level
 - Which is better for high concurrency?
- Processes
 - Use of fork()
 - Messages
- Synchronization and Deadlock
 - Conditions for deadlock
 * Safe, Unsafe, Deadlocked States
 * Resource Allocation Graphs
 - Semaphores
 * `sem_wait`
 * `sem_signal`
 - Busy wait v. Blocking wait
 - Dining Philosophers Problem
- Race avoidance
 - Four conditions for race avoidance?
- Job Scheduling
 - Round Robin
 * Quantum
 * Run Time
 * CPU Efficiency formula
 - Multilevel Feedback Queue
 * Is starvation possible?*
 * Effect on time-sharing system
 * CPU vs. I/O bound processes
 - First-come First-served (FIFO)
 - Shortest-Job-First (SJF)
 - Priority
 - Burst Time
 - Waiting Time
• Virtual Memory
 – Advantages
 – Page Tables
 * Table fields (sometimes top+second levels)
 * Offset
 * Be able to compute sizes
 – Replacement Policies
 * Least Recently Used (LRU)
 * FIFO
 * Least Frequently Used (LFU)
 * Working Set Page Replacement
 * Belady’s optimal algorithm
 · Forward distance: distance between the current page references in the reference stream to the
 next place where each candidate is once again referenced.
 · Evict the page with greatest forward distance.
 – Performance
 * Average Address Translation Time
 * Faults given code
 * Code optimization
 * Hit/Miss Rates
 * Mean Overhead (read time)

2 Computer Organization

• Amdahl’s Law

• Pipelining
 – Classic RISC five-stage processor:
 * Fetch
 * Register, Read & Decode
 * Execute/Arithmetic Logic Unit (ALU)
 * Memory Access
 * Write Back
 – Data Hazards
 * Memory RAW
 * Memory WAR
 * Memory WAW
 * Register RAW
 * Register WAR
 * Register WAW
 * Control
 – Stalls
 – Dependences
 * Recognize dependencies in assembly.
 * Optimize with loop unrolling
- Forwarding
- Performance vs. Sequential Processor

- Parallelism (Instruction-level parallelism?)
 - Scoreboard
 - Tomasulo Algorithm
 - Tomasulo Algorithm with Speculation (i.e. with Re-order Buffer)
 - What limitations are improved with the above?

- Out-of-order (dataflow-order)
- Temporal and Spatial Locality
- Speculation
- Victim Cache
- Trace Scheduling
- Software Pipelining
- Instruction Prefetching
- Reorder Buffer (ROB)

- Processors
 - Types
 - Speculative? (Tomaulo’s algorithm?)
 - Costs
 - Benefits
 - Frequencies
 - Affects on performance metrics
 - Branch delay slot and instruction reordering?
 - Performance
 - dynamic Instruction Count (IC)
 - Cycles Per Instruction (CPI)
 - Clock Cycle Time (CCT)
 - Million Instructions Per Second (MIPS)
 \[
 MIPS = \frac{\text{InstructionCount}}{\text{ExecutionTime} \times 10^6} = \frac{\text{ClockRate}}{\text{CPI} \times 10^6}
 \]

 What are the pros and cons of this metric?

- Disk Storage
 - Measurements of performance
 - Reliability (Mean Time To Failure [MTTF])
 - Latency
 - Throughput-1
 - Throughput-s
 - Arrays of Independent Disks (AID)
 - Striping
Mirroring
- Fault tolerance
- RAID (and the types)
 - RAID 1
 - RAID 3
 - RAID 5

- Memory Heirarchy
 - Cache Options
 - What size data to store
 - Cache Index
 - Block Offset
 - Cache Tag
 - Data
 - What to do with hit
 - Write-through
 - Write-back
 - What to do with miss
 - Write-allocate
 - No-write-allocate
 - Expected speedup
 - Write buffers
 - Merging Write Buffer
 - Non-merging Buffer
 - Blocking (hit under miss)
 - Non-blocking (miss under miss)
 - Fully Associative
 - Direct Mapped
 - 4-way Associative
 - Set associative
 - Tag
 - Index
 - Block offset
 - Hit rate
 - Miss rate
 - Miss penalty
 - Hit Ratio Given an \(n \)-level memory system, the hit ration \(H_i \) associated with the memory \(M_i \) at level \(i \) is the probability that the information requested by the CPU is stored in level \(M_i \). This can be used to compute the average memory access time in \(n \)-level memory given hit-times \(T_i \).
 - Average memory access time
 - Split cache (I-cache, D-cache)
 - Unified cache
 - Virtual vs. Physical cache
 - Cache Misses*
* Compulsory
* Conflict
* Capacity
* Optimization Techniques to reduce cache miss rates
* Optimization Techniques to reduce cache hit time
* Software/Hardware Optimizations

– Page faults
– Translation Lookaside Buffer (TLB)
 * Hits and Misses
 * Index, Tag, Data
 * Virtual Page Number, Page Offset
 * Address Space Number (ASN) to prevent flushes on a context switch. (Why?)
– Cache affect on Cycles Per Instruction (CPI)
 * Affect on CPI
 * How many cycles are due to cache misses?

• Instruction Set Architecture (ISA)
 – Stack ISA
 – Load-Store ISA