1 SEQUENCES

DEF: An ordered field is a field \(F \) and total order \(< \) (for all \(x, y, z \in F \)):
- (i) \(x < y, y < x \) or \(x = y \),
- (ii) \(x < y, y < z \Rightarrow x < z \),
- (iii) \(x < y \Rightarrow x + z < y + z \),
- (iv) \(0 < y, x \Rightarrow 0 < xy \).

DEF: The Archimedean property on an ordered field \(F \) is \(\forall x, y \in F, x, y > 0 \), there exists \(N \in \mathbb{N} \) such that \(n \cdot x > y \).

FACT: \(\frac{a}{b} = \frac{c}{d} \Rightarrow \frac{ra + sd}{rb + sd} = \frac{a}{b} \) for all \(a, b, c, d, r, s \in \mathbb{Z} \) with \(rb + sd \neq 0 \).

DEF: A real number \(L \) is the limit of a sequence of real numbers \((a_n)_{n=1}^{\infty} \) if for every \(\varepsilon > 0 \), there is an \(N \in \mathbb{N} \) such that \(|a_n - L| < \varepsilon \) for all \(n \geq N \). Then \((a_n) \) converges to \(L \).

THM: “Squeeze Theorem” Suppose three sequences \((a_n), (b_n), (c_n) \) satisfy \(a_n \leq b_n \leq c_n \) and \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L \). Then \(\lim_{n \to \infty} b_n = L \).

PROP: If \((a_n)_{n=1}^{\infty} \) converges, then the set \(\{a_n | n \in \mathbb{N}\} \) is bounded.

THM: If \(\lim_{n \to \infty} a_n = L \), \(\lim_{n \to \infty} b_n = M \), and \(\alpha \in \mathbb{R} \), then
- (i) \(\lim_{n \to \infty} \alpha a_n = \alpha L \),
- (ii) \(\lim_{n \to \infty} \alpha a_n = \alpha M \),
- (iii) \(\lim_{n \to \infty} a_n b_n = LM \),
- (iv) \(\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{L}{M} \) if \(M \neq 0 \).

THM: For a sequence \(a_n \geq 0 \), we have \(\lim_{n \to \infty} a_n = +\infty \) if an only if \(\lim_{n \to \infty} \frac{1}{a_n} = 0 \).

THM: “Least Upper Bound Principle” Every nonempty subset \(S \) of \(\mathbb{R} \) that is bounded above has a supremum. Similarly, every nonempty subset \(S \) of \(\mathbb{R} \) that is bounded below has an infimum.

THM: “Monotone Convergence Theorem” A monotone increasing sequence that is bounded above converges. A monotone decreasing sequence that is bounded below converges.

THM: Let \((a_n) \) be a sequence.
- (i) If \(\lim a_n \) is defined, then \(\lim \inf a_n = \lim \sup a_n = \lim a_n \).
- (ii) If \(\lim \inf a_n = \lim \sup a_n = L \), then \(\lim a_n = L \).

DEF: A subsequence \((a_{n_k})_{k=1}^{\infty} \) is a new sequence \((a_{n_k})_{k=1}^{\infty} = (a_{n_1}, a_{n_2}, \ldots) \) where \(n_1 < n_2 < \cdots \).

THM: If the sequence \((a_n) \) converges, then every subsequence converges to the same limit.

THM: Every sequence \((a_n) \) has a monotonic subsequence.

COR: Let \((a_n) \) be a sequence. There exists a monotonic subsequence whose limit is \(\limsup a_n \) and there exists a monotonic subsequence shows limit is \(\liminf a_n \).

DEF: Let \((a_n) \) be a sequence in \(\mathbb{R} \). A subsequential limit is any real number (or symbol +\(\infty\), \(-\infty\)) that is the limit of some subsequence \((a_{n_k}) \).

THM: Let \((a_n) \) be any sequence in \(\mathbb{R} \), and let \(S \) denote the set of subsequential limits of \((a_n) \).
- (i) \(S \) is nonempty.
- (ii) \(\sup S = \lim \sup a_n \) and \(\inf S = \lim \inf a_n \).
- (iii) \(\lim a_n \) exists if an only if \(S \) has a single element, namely \(\lim a_n \).

THM: Let \(S \) denote the set of subsequential limits of a sequence \((a_n) \). Suppose \((b_n) \) is a sequence in \(S \cap \mathbb{R} \) and that \(t = \lim b_n \). Then \(t \in S \).

LMA: “Nested Intervals Lemma” Suppose that \(I_n = [a_n, b_n] = \{ x \in \mathbb{R} | a_n \leq x \leq b_n \} \) are nonempty closed intervals such that \(I_{n+1} \subseteq I_n \) for each \(n \geq 1 \). Then the intersection \(\bigcap_{n \geq 1} I_n \) is nonempty.

THM: “Bolzano-Weierstrass Theorem” Every bounded sequence of real numbers has a convergent subsequence.

FACT: For a bounded sequence \((a_n) \), \(\limsup a_n \) (\(\liminf a_n \)) is the largest (smallest) possible value for a convergent subsequence.

DEF: A sequence \((a_n)_{n=1}^{\infty} \) is called a Cauchy sequence if for every \(\varepsilon > 0 \), there is an integer \(N \) such that \(|a_m - a_n| < \varepsilon \) for all \(m, n \geq N \).

DEF: A subset \(S \) of \(\mathbb{R} \) is said to be complete if every Cauchy sequence converges to a point in \(S \).

THM: “Completeness Theorem” A sequence of real numbers converges if and only if it is a Cauchy sequence. In particular, \(\mathbb{R} \) is complete.
2 Series

DEF: Given a sequence \((a_n)_{n=1}^{\infty}\), the infinite series \(\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{k=1}^{n} a_k\) converges if the limit exists, diverges otherwise.\(^{25}\)

FACT: Some series can be solved using a telescoping sum, by cancelling elements between sequence terms.\(^{26}\)

THM: “nth term test” If \(\lim a_n \neq 0\), then \(\sum a_n\) diverges.\(^{27}\)

THM: “Cauchy Criterion for Series” The following are equivalent for a series \(\sum_{n=1}^{\infty} a_n\).

(i) The series converges.
(ii) For every \(\varepsilon > 0\), there is an \(N \in \mathbb{N}\) so that \(\left| \sum_{k=n+1}^{\infty} a_k \right| < \varepsilon\) for all \(n \geq N\).
(iii) For every \(\varepsilon > 0\), there is an \(N \in \mathbb{N}\) so that \(\left| \sum_{k=m+1}^{n} a_k \right| < \varepsilon\) if \(n, m \geq N\).\(^{28}\)

PROP: If \(a_k \geq 0\) for \(k \geq 1\) and \(s_n = \sum_{k=1}^{n} a_k\), then either

(i) \((s_n)_{n=1}^{\infty}\) is unbounded, in which case \(\sum_{n=1}^{\infty} a_n\) diverges.
(ii) \((s_n)_{n=1}^{\infty}\) is bounded above, in which case \(\sum_{n=1}^{\infty} a_n\) converges.

THM: “Convergence of Geometric Series” A geometric series \(\sum_{n=0}^{\infty} ar^n\) converges to \(\frac{a}{1-r}\) if \(|r| < 1\).\(^{30}\)

THM: “Convergence of p-series” A \(p\)-series \(\sum_{n=1}^{\infty} \frac{1}{n^p}\) converges if and only if \(p > 1\).\(^{31}\)

THM: “Comparison Test” Consider two sequences \((a_n), (b_n)\) with \(a_n \leq b_n\) for all \(n \geq 1\). If \((b_n)\) is summable, then \((a_n)\) is summable and \(\sum_{n=1}^{\infty} a_n \leq \sum_{n=1}^{\infty} b_n\). If \((a_n)\) is not summable, then \((b_n)\) is not summable.\(^{32}\)

THM: “Ratio Test” A series \(\sum a_n\) of nonzero terms

(i) Converges absolutely if \(\limsup |a_{n+1}/a_n| < 1\),
(ii) Diverges if \(\liminf |a_{n+1}/a_n| > 1\).\(^{33}\)

THM: “Root Test” Suppose that \(a_n \geq 0\) for all \(n\) and let \(\ell = \limsup \sqrt[n]{a_n}\). If \(\ell < 1\), then \(\sum_{n=1}^{\infty} a_n\) converges absolutely, and if \(\ell > 1\), the series diverges.\(^{34}\)

THM: “Integral Test” If \(f: \mathbb{R} \to \mathbb{R}\) is positive and decreasing, then \(\sum_{n=1}^{\infty} f(n)\) converges if and only if \(\int_{1}^{\infty} f(x)dx\) exists (and is finite).\(^{35}\)

THM: “Limit Comparison Test” If \(\sum_{n=1}^{\infty} b_n\) is a convergent series of positive numbers \(b_n\) and \(\lim_{n \to \infty} \frac{|a_n|}{b_n} < \infty\) then \(\sum_{n=1}^{\infty} a_n\) converges.\(^{36}\)

THM: A series \(\sum_{n=1}^{\infty} a_n\) is called absolutely convergent if the series \(\sum_{n=1}^{\infty} |a_n|\) converges. A series that converges but is not absolutely convergent is called conditionally convergent.\(^{40}\)

THM: A rearrangement of a series \(\sum_{n=1}^{\infty} a_n\) is another series with the same terms in a different order. This can be described by a permutation \(\pi\) of the natural numbers \(\mathbb{N}\) determining the series \(\sum_{n=1}^{\infty} a_{\pi(n)}\).\(^{41}\)

THM: For an absolutely convergent series, every rearrangement converges to the same limit.

THM: “Leibniz Alternating Series Test” Suppose that \((a_n)_{n=1}^{\infty}\) is a monotone decreasing sequence \(\sum_{n=1}^{\infty} a_n\) converges.\(^{39}\)

COR: Suppose that \((a_n)_{n=1}^{\infty}\) is a monotone increasing sequence and that \(\lim_{n \to \infty} a_n = 0\). Then the difference between the sum of the alternating series \(\sum_{n=1}^{\infty} (-1)^n a_n\) and the \(N\)th partial sum is at most \(|a_N|\).

THM: A series \(\sum_{n=1}^{\infty} a_n\) is called absolutely convergent if the series \(\sum_{n=1}^{\infty} |a_n|\) converges. A series that converges but is not absolutely convergent is called conditionally convergent.\(^{40}\)

THM: A rearrangement of a series \(\sum_{n=1}^{\infty} a_n\) is another series with the same terms in a different order. This can be described by a permutation \(\pi\) of the natural numbers \(\mathbb{N}\) determining the series \(\sum_{n=1}^{\infty} a_{\pi(n)}\).\(^{41}\)

THM: For an absolutely convergent series, every rearrangement converges to the same limit.

THM: “Summation by Parts Lemma” Suppose \((x_n)\) and \((y_n)\) are sequences of real numbers. Define \(X_n = \sum_{k=1}^{n} x_k\) and \(Y_n = \sum_{k=1}^{n} y_k\). Then \(\sum_{n=1}^{\infty} x_k y_{n+1} = \sum_{n=1}^{\infty} X_n y_{n+1}\).\(^{44}\)

THM: “Dirichlet’s Test” Suppose that \((a_n)_{n=1}^{\infty}\) is a sequence of real numbers with bounded partial sums. If \((b_n)_{n=1}^{\infty}\) is a sequence of positive numbers decreasing monotonically to 0, then the series \(\sum_{n=1}^{\infty} a_n b_n\) converges.\(^{45}\)

THM: “Abel’s Test” Suppose that \(\sum_{n=1}^{\infty} a_n\) converges and \((b_n)\) is a monotonic convergent sequence. Then, \(\sum_{n=1}^{\infty} a_n b_n\)

Derrick Stolee
3 Topology of \mathbb{R}^n

Def: The dot product or inner product of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{\infty} x_i y_i$.

Thm: “Schwarz Inequality” For all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| \cdot ||\mathbf{y}||$. Equality holds if and only if \mathbf{x} and \mathbf{y} are colinear.

Thm: “Triangle Inequality” The triangle inequality holds for the Euclidean norm on \mathbb{R}^n: $||\mathbf{x} + \mathbf{y}|| \leq ||\mathbf{x}|| + ||\mathbf{y}||$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Moreover, equality holds if and only if either $\mathbf{x} = 0$ or $\mathbf{y} = c\mathbf{x}$ with $c \geq 0$.

Def: A set $V = \{x_1, \ldots, x_m\} \subseteq \mathbb{R}^n$ is orthonormal if $\langle v_i, v_j \rangle = 0$ when $i \neq j$ and $\langle v_i, v_i \rangle = 1$. If $m = 0$, then V spans \mathbb{R}^n and is called an orthonormal basis.

LMA: Let $\{v_1, \ldots, v_n\}$ be an orthonormal set in \mathbb{R}^n. Then $\|\sum_{i=1}^{n} a_i x_i \| = (\sum_{i=1}^{n} |a_i|^2)^{1/2}$.

Def: A sequence of points (x_k) in \mathbb{R}^n converges to a point a if for every $\varepsilon > 0$, there is an integer N so that $||x_k - a|| < \varepsilon$ for all $k > N$. In this case, write $\lim_{k \to \infty} x_k = a$.

LMA: Let (x_k) be a sequence in \mathbb{R}^n. Then $\lim_{k \to \infty} x_k = a$ if and only if $\lim_{k \to \infty} ||x_k - a|| = 0$.

LMA: A sequence $x_k = (x_{k,1}, \ldots, x_{k,n})$ in \mathbb{R}^n converges to a point $a = (a_1, \ldots, a_n)$ if and only if each coordinate converges: $\lim_{k \to \infty} x_{k,i} = a_i$ for $1 \leq i \leq n$.

Def: A sequence x_k in \mathbb{R}^n is Cauchy if for every $\varepsilon > 0$, there is an integer N so that $||x_k - x_{\ell}|| < \varepsilon$ for all $k, \ell > N$. A set $S \subseteq \mathbb{R}^n$ is complete if every Cauchy sequence of points in S converges to a point in S.

Thm: “Completeness Theorem for \mathbb{R}^n” Every Cauchy sequence in \mathbb{R}^n converges. Thus, \mathbb{R}^n is complete.

Def: A point x is a limit point of a subset $A \subseteq \mathbb{R}^n$ if there is a sequence $(a_k)_{k=1}^{\infty}$ with $a_k \in A$ such that $x = \lim_{k \to \infty} a_k$.

A set $A \subseteq \mathbb{R}^n$ is closed if it contains all of its limit points.

Def: A point x is a cluster point of a subset $A \subseteq \mathbb{R}^n$ if there is a sequence $(a_n)_{n=1}^{\infty}$ with $a_n \in A \setminus \{x\}$ such that $x = \lim_{n \to \infty} a_n$.

Prop: If $A, B \subseteq \mathbb{R}^n$ are closed, then $A \cup B$ is closed. If $\{A_i \mid i \in I\}$ is a family of closed subsets of \mathbb{R}^n, then $\bigcap_{i \in I} A_i$ is closed.

Ex: Let $A_0 = B_{\frac{1}{n^2}}(0)$. The family of sets $\{A_n\}_{n \in \mathbb{N}}$ has every set closed, but $\bigcup_{n \in \mathbb{N}} A_n = B_1(0)$, which is not closed.

Def: If A is a subset of \mathbb{R}^n, the closure of A is the set \overline{A} consisting of all limit points of A.

Def: The ball about a in \mathbb{R}^n of radius r is the set $B_r(a) = \{x \in \mathbb{R}^n \mid ||x - a|| < r\}$. A subset $U \subseteq \mathbb{R}^n$ is open if for every $a \in U$, there is some $r > 0$ so that the ball $B_r(a)$ is contained in U.

Prop: Let $A \subseteq \mathbb{R}^n$. Then \overline{A} is the smallest closed set containing A. In particular, $\overline{\mathbb{R}^n} = \mathbb{R}^n$.

Thm: “Duality of Open and Closed Sets” A set $A \subseteq \mathbb{R}^n$ is open if and only if the complement of A, $A' = \{x \in \mathbb{R}^n \mid x \notin A\}$, is closed.

Prop: If U and V are open subsets of \mathbb{R}^n then $U \cap V$ is an open subset of \mathbb{R}^n. If $\{U_i \mid i \in I\}$ is a family of open subsets of \mathbb{R}^n, then $\bigcup_{i \in I} U_i$ is open.

Ex: Let $A_0 = B_{\frac{1}{n^2}}(0)$. The family of sets $\{A_n\}_{n \in \mathbb{N}}$ has every set open, but $\bigcap_{n \in \mathbb{N}} A_n = \overline{B}_1(0)$, which is closed.

Def: The interior, $\text{int} \, X$, of a set X is the largest open set contained in X. If $\text{int} \, X = \emptyset$, then X has empty interior.

Def: A subset $A \subseteq \mathbb{R}^n$ is compact if every sequence $(a_k)_{k=1}^{\infty}$ of points in A has a convergent subsequence $(a_{k_j})_{j=1}^{\infty}$ with limit $a = \lim_{j \to \infty} a_{k_j}$.

Def: A subset S of \mathbb{R}^n is called bounded provided that there is a real number R such that S is contained in the ball $B_R(0)$.

LMA: A compact subset of \mathbb{R}^n is closed and bounded.

LMA: If C is a closed subset of a compact subset of \mathbb{R}^n, then C is compact.

LMA: The cube $[a, b]^n$ is a compact subset of \mathbb{R}^n.

Thm: “Heine-Borel Theorem” A subset of \mathbb{R}^n is compact if and only if it is closed and bounded.

Thm: “Cantor’s Intersection Theorem” If $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$ is a decreasing sequence of nonempty compact subsets of \mathbb{R}^n, then $\bigcap_{k \geq 1} A_k$ is not empty.

Def: A set whose closure has no interior is nowhere dense. A point x of a set A is isolated if there is an $\varepsilon > 0$ such that the ball $B_{\varepsilon}(x)$ intersects A only in the singleton $\{x\}$. A set A is perfect if each point $x \in A$ is the limit of some sequence in $A \setminus \{x\}$.
4 Functions

Def: Let $S \subseteq \mathbb{R}^n$ and let $f : S \to \mathbb{R}^m$. If $a \in S$ is a cluster point (limit point of $S \setminus \{a\}$) then a point $v \in \mathbb{R}^n$ is a limit of f at a if for every $\varepsilon > 0$ there is an $r > 0$ so that $\|f(x) - v\| < \varepsilon$ whenever $0 < \|x - a\| < r$ and $x \in S$. Write $\lim_{x \to a} f(x) = v$.

Def: Let $S \subseteq \mathbb{R}^n$ and let $f : S \to \mathbb{R}^m$. f is **continuous at** $a \in S$ if for every $\varepsilon > 0$, there is an $r > 0$ such that, for all $x \in S$ with $\|x - a\| < r$, we have $\|f(x) - f(a)\| < \varepsilon$. Moreover, f is **continuous on** S if it is continuous at each point $a \in S$. If f is not continuous at a, f is **discontinuous at** a.

Def: A function $f : S \to \mathbb{R}^m$ is **piecewise continuous** if for any subset $A \subseteq S$, f is continuous on A. The **limit** of f at a, $\lim_{x \to a} f(x) = L$, if for every sequence (x_n) in S such that $x_n \to a$, $f(x_n) \to L$. Moreover, f is **continuous at** a if and only if $\lim_{x \to a} f(x) = f(a)$.

Thm: If f, g are functions from a common domain S into \mathbb{R}^m, $a \in S$ such that $\lim_{x \to a} f(x) = u$ and $\lim_{x \to a} g(x) = v$, then
(i) $\lim_{x \to a} (f(x) + g(x)) = u + v$.
(ii) $\lim_{x \to a} c f(x) = c u$.
(iii) $\lim_{x \to a} f(x) g(x) = u v$, and
(iv) $\lim_{x \to a} f(x)/g(x) = u/v$ provided $v \neq 0$.

Thm: If f, g are functions from S to \mathbb{R}^m that are continuous at $a \in S$ and $\alpha \in \mathbb{R}$, then
(i) $f + g$ is continuous at a.
(ii) αf is continuous at a.
When the range is contained in \mathbb{R},
(iii) fg is continuous at a
(iv) f/g is continuous at a provided that $g(a) \neq 0$.

Def: A function f is a **rational function** if $f(x) = p(x)/q(x)$ where $p, q \in \mathbb{R}[x]$ and $q \neq 0$. Rational functions are continuous except where $q(x) = 0$.

Def: If a function $f : S \to T$ and $g : T \to \mathbb{R}^m$, then the composition of g and f, denoted $g \circ f$ is the function that sends x to $g(f(x))$.

Derrick Stolee
THM: Suppose $f : S \to T$ and $g : T \to \mathbb{R}^m$. If f is continuous at $a \in S$ and g is continuous at $f(a) \in T$, then $g \circ f$ is continuous at a.

THM: Let C be a compact subset of \mathbb{R}^n, and let f be a continuous function from C into \mathbb{R}^m. Then the image set $f(C)$ is compact.

THM: “Extreme Value Theorem” Let C be a compact subset of \mathbb{R}^n and let f be a continuous function from C into \mathbb{R}. Then there are points a and b in C attaining the minimum and maximum values of f on C. That is, $f(a) \leq f(x) \leq f(b)$ for all $x \in C$.

THM: Suppose that $C \subseteq \mathbb{R}^n$ is compact and $f : C \to \mathbb{R}^n$ is continuous. Then f is uniformly continuous on C.

THM: “Intermediate Value Theorem” If f is a continuous real-valued function on $[a, b]$ with $f(a) < 0 < f(b)$, then there exists a point $c \in (a, b)$ such that $f(c) = 0$.

COR: Every Lipschitz function is uniformly continuous.

COR: Every linear transformation from \mathbb{R}^n to \mathbb{R}^m is uniformly continuous.

THM: Suppose that $C \subseteq \mathbb{R}^n$ is compact and $f : C \to \mathbb{R}^n$ is continuous. Then f is uniformly continuous on C.

THM: “Intermediate Value Theorem” If f is a continuous real-valued function on $[a, b]$ with $f(a) < 0 < f(b)$, then there exists a point $c \in (a, b)$ such that $f(c) = 0$.

COR: If f is a continuous real-valued function on $[a, b]$, then $f([a, b])$ is a closed interval.

DEF: A path in $S \subseteq \mathbb{R}^n$ from a to b, both points in S, is the image of a continuous function γ from $[0, 1]$ into S such that $\gamma(0) = a$ and $\gamma(1) = b$.

COR: Suppose that $S \subseteq \mathbb{R}^n$ and f is a continuous real-valued function on S. If there is a path from a to b in S and $f(a) < 0 < f(b)$, then there is a point c on the path so that $f(c) = 0$.

DEF: A function f is increasing on an interval (a, b) if $f(x) \leq f(y)$ whenever $a < x \leq y < b$. It is strictly increasing on (a, b) if $f(x) < f(y)$ whenever $a < x < y < b$. Similarly, define decreasing and strictly decreasing functions. All of these functions are called monotone.

PROP: If f is an increasing function on the interval (a, b), then the one-sided limits of f exist at each point $c \in (a, b)$ and $\lim_{x \to c^-} f(x) = L$ and $\lim_{x \to c^+} f(x) = M$. For decreasing functions, the inequalities are reversed.

COR: The only type of discontinuity that a monotone function on an interval can have is a jump discontinuity.

COR: If f is a monotone function on $[a, b]$ and the range of f intersects every nonempty open interval in $[f(a), f(b)]$ then f is continuous.

THM: A monotone function on $[a, b]$ has at most countably many discontinuities.

THM: Let f be a continuous strictly increasing function on $[a, b]$. Then f maps $[a, b]$ one-to-one and onto $[f(a), f(b)]$. Moreover the inverse function f^{-1} is also continuous and strictly increasing.

PROP: Let $f : S \to \mathbb{R}^m$, $S \subseteq \mathbb{R}^n$ be a continuous function. If $T \subseteq S$ is compact, $f(T)$ is compact.

EX: The Cantor function $c : [0, 1] \to [0, 1]$ is an onto function defined such that c is constant over the intervals not in the Cantor set, but is strictly increasing over the Cantor set. Also, $c([0, 1]) = [0, 1]$.

Derrick Stolee
5 Intro to Calculus

DEF: A function \(f: (a, b) \to \mathbb{R} \) is differentiable at a point \(x_0 \in (a, b) \) if \(\lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h} \) exists. We write \(f'(x_0) \) for this limit. \(^{119} \)

DEF: When \(f \) is differentiable at \(x_0 \), we define the tangent line to \(f \) at \(x_0 \) to be the linear function \(T(x) = f(x_0) + f'(x_0)(x-x_0) \). \(^{120} \)

PROP: If \(f \) is differentiable at \(x_0 \), then it is continuous at \(x_0 \). Differentiable functions are continuous. \(^{121} \)

LMA: Let \(f \) be a function on \([a, b]\) that is differentiable at \(x_0 \). Let \(T(x) \) be the tangent line to \(f \) at \(x_0 \). Then \(T \) is the unique linear function with the property \(\lim_{x \to x_0} \frac{f(x)-T(x)}{x-x_0} = 0 \). \(^{122} \)

COR: If \(f(x) \) is a function on \((a, b)\) and \(x_0 \in (a, b) \), then the following are equivalent:

(i) \(f \) is differentiable at \(x_0 \).
(ii) There is a linear function \(T(x) \) and a function \(\varepsilon(x) \) on \((a, b)\) such that \(f(x) = f(x_0) + \varepsilon(x)(x-x_0) \) and \(\lim_{x \to x_0} \varepsilon(x) = 0 \) and \(f(x) = T(x) + \varepsilon(x)(x-x_0) \).

(iii) There is a function \(\varphi(x) \) on \((a, b)\) such that \(f(x) = f(x_0) + \varphi(x)(x-x_0) \) and \(\lim_{x \to x_0} \varphi(x) = 0 \).

(iv) If \(f \) is differentiable at \(x_0 \), then there is a point \(c \) such that \(f(x) = f(x_0) + \varphi(x)(x-x_0) \) and \(\lim_{x \to x_0} \varphi(x) = 0 \).

LMA: Let \(f \) and \(g \) be differentiable functions at the point \(a \). Each of the functions \(e \) \(f \) is a constant, \(f + g \), \(fg \), and \(f/g \) are differentiable at \(a \), except \(f/g \) if \(g(a) = 0 \). The formulas are \(^{124} \)

(i) \((c)f'(a) = c\cdot f'(a) \)
(ii) \((f+g)'(a) = f'(a) + g'(a) \)
(iii) \((fg)'(a) = f(a)g'(a) + f'(a)g(a) \)
(iv) \((f/g)'(a) = (g(a)f'(a) - f(a)g'(a))/g^2(a) \) if \(g(a) \neq 0 \).

THM: “Arithmetic of Derivatives” Let \(f \) and \(g \) be differentiable functions at the point \(a \). Each of the functions \(f \) \(g \) is an end point \((a, b) \) \(g \) is differentiable at \(f(x_0) \). Then the composition \(h(x) = g(f(x)) \) is defined, and \(h'(x_0) = g'(f(x_0))f'(x_0) \). \(^{125} \)

EX: The class of functions \(f(x) = x^n \sin(1/x) \) for \(x > 0 \) and \(f(0) = 0 \) for \(a > 0 \) is differentiable on \([0, \infty)\), but the derivative function is not continuous at \(0 \). \(^{126} \)

DEF: A function \(f(x) \) is even if \(f(-x) = f(x) \) and odd if \(f(-x) = -f(x) \). \(^{127} \)

HERE MARKS THE END OF EXAM 2 MATERIAL-

THM: “Fermat’s Theorem” Let \(f \) be a continuous function on an interval \([a, b]\) that takes its maximum or minimum value at a point \(x_0 \). Then, exactly one of the following holds:

(i) \(x_0 \) is an endpoint \(a \) or \(b \), (ii) \(f \) is not differentiable at \(x_0 \), (iii) \(f \) is differentiable at \(x_0 \) and \(f'(x_0) = 0 \). \(^{128} \)

THM: “Rolle’s Theorem” Suppose that \(f \) is a function that is continuous on \([a, b]\) and differentiable on \((a, b)\) such that \(f(a) = f(b) = 0 \). Then there is a point \(c \in (a, b) \) such that \(f'(c) = 0 \). \(^{129} \)

THM: “Mean Value Theorem” Suppose that \(f \) is a function that is continuous on \([a, b]\) and differentiable on \((a, b)\). Then there is a point \(c \in (a, b) \) such that \(f'(c) = \frac{f(b) - f(a)}{b-a} \). \(^{130} \)

COR: Let \(f \) be a differentiable function on \([a, b]\). \(^{131} \)

(i) If \(f'(x) \) is (strictly) positive, then \(f \) is (strictly) increasing.
(ii) If \(f'(x) \) is (strictly) negative, then \(f \) is (strictly) decreasing. \(^{132} \)
(iii) If \(f'(x) = 0 \) at every \(x \in (a, b) \), then \(f(x) \) is constant. \(^{133} \)
(iv) If \(g \) is differentiable on \([a, b]\) with \(g'(x) = f'(x) \), then there is a constant \(c \) such that \(f(x) = g(x) + c \). \(^{134} \)

DEF: If a twice differentiable function \(f \) has \(f''(x) \) positive on an interval \([a, b]\) then \(f \) is convex or concave up. If \(f''(x) \) is negative, then \(f \) is concave or concave down. The points where \(f''(x) \) changes sign are called inflection points. \(^{135} \)

THM: “Darboux’s Theorem/Intermediate Value Theorem for Derivatives” If \(f \) is differentiable on \([a, b]\) and \(f'(a) < L < f'(b) \), then there is a point \(x_0 \) in \((a, b)\) at which \(f'(x_0) = L \). \(^{136} \)

THM: Let \(f \) is a one-to-one continuous function on an open interval \(I \), and let \(J = f(I) \). If \(f \) is differentiable at \(x_0 \in I \) and if \(f'(x_0) \neq 0 \), then \(f^{-1} \) is differentiable at \(y_0 = f(x_0) \) and \((f^{-1})'(y_0) = \frac{1}{f'(x_0)} \). \(^{137} \)

Derrick Stolee
6 Integration

Def: Let \(f : [a, b] \to \mathbb{R} \) be a bounded function.\(^{138}\)
(i) A partition of \([a, b]\) is a finite set \(P = \{ x_0 < x_1 < \cdots < x_{n-1} < x_n = b \}. \) Set \(\Delta_j = x_j - x_{j-1} \) and define the mesh of a partition \(P \) as \(\text{mesh}(P) = \max_{1 \leq j \leq n} \Delta_j. \)
(ii) Let the maximum and minimum be \(M_j(f, P) = \sup \{ f(x) \mid x_{j-1} \leq x \leq x_j \} \) and \(m_j(f, P) = \inf \{ f(x) \mid x_{j-1} \leq x \leq x_j \}. \)
(iii) Let the upper (Darboux) sum and lower (Darboux) sum be \(U(f, P) = \sum_{j=1}^{n} M_j(f, P) \Delta_j \) and \(L(f, P) = \sum_{j=1}^{n} m_j(f, P) \Delta_j. \)
(iv) If given an evaluation sequence \(X = \{ x'_j \mid 1 \leq j \leq n \} \) with \(x'_j \in [x_{j-1}, x_j] \) the Riemann sum is \(I(f, P, X) = \sum_{j=1}^{n} f(x'_j) \Delta_j. \)
(v) A partition \(R \) is a refinement of a partition \(P \) provided \(P \subseteq R \). If \(P \) and \(Q \) are partitions, then \(R \) is a common refinement if \(P \cup Q \subseteq R \).

Thm: “Riemann’s Condition” Let \(f(x) : [a, b] \to \mathbb{R} \) be a bounded function. The following are equivalent: \(^{141}\)
(i) \(f \) is Riemann integrable.
(ii) For each \(\varepsilon > 0 \), there is a partition \(P \) so that \(U(f, P) - L(f, P) < \varepsilon. \)

Cor: If \(P \) and \(Q \) are any two partitions of \([a, b]\), \(L(f, P) \leq U(f, Q) \).\(^{142}\)

Def: Define the lower Darboux integral, \(L(f) = \sup_P L(f, P) \) and the upper Darboux integral, \(U(f) = \inf_P U(f, P). \) Note that \(L(f) \leq U(f). \) A bounded function \(f \) on a finite interval \([a, b]\) is called Riemann integrable if \(L(f) = U(f) \).

In this case, we write \(L(f) = \int_a^b f(x)dx = U(f). \)

Thm: Let \(f(x) : [a, b] \to \mathbb{R} \) be a bounded function. The following are equivalent: \(^{146}\)
(i) \(f \) is Riemann integrable.
(ii) For each \(\varepsilon > 0 \), there is a partition \(P \) so that \(U(f, P) - L(f, P) < \varepsilon. \)

Thm: Let \(f \) be a bounded real-valued function on \([a, b]\). If there is a sequence of partitions \(\{ P_n \} \) so that \(\lim_{n \to \infty} U(f, P_n) - L(f, P_n) = 0 \), then \(f \) is Riemann integrable. Moreover, if \(X_n \) is any choice of points \(x'_{n,j} \) selected from each interval of \(P_n \), then \(\lim_{n \to \infty} I(f, P_n, X_n) = \int_a^b f(x)dx. \)

Thm: Let \(f(x) : [a, b] \to \mathbb{R} \) be a bounded function, then \(f \) is Riemann integrable with \(\int_a^b f(x)dx = L \) if and only if for every \(\varepsilon > 0 \), there is a \(\delta > 0 \) so that every partition \(Q \) such that \(\text{mesh}(Q) < \delta \) satisfies \(U(f, Q) - L(f, Q) < \varepsilon. \)

Thm: Every monotone function on \([a, b]\) is Riemann integrable.\(^{149}\)

Thm: Every continuous function on \([a, b]\) is integrable.\(^{150}\)

Def: Say that \(f \) is Riemann integrable on \([a, \infty)\) if the improper integral \(\int_a^\infty f(x)dx := \lim_{b \to \infty} \int_a^b f(x)dx \) exists.\(^{151}\)

Thm: “Arithmetic of Integrals” Let \(f \) and \(g \) be integrable function on \([a, b]\) and \(c \in \mathbb{R} \).
(i) \(cf \) is integrable and \(\int_a^b cf(x)dx = c \int_a^b f(x)dx. \)
(ii) \(f + g \) is integrable and \(\int_a^b (f + g)(x)dx = \int_a^b f(x)dx + \int_a^b g(x)dx. \)

Thm: If \(f \) and \(g \) are integrable on \([a, b]\) and if \(f(x) \leq g(x) \) for all \(x \in [a, b] \), then \(\int_a^b f(x)dx \leq \int_a^b g(x)dx. \)

Thm: If \(f \) is integrable on \([a, b]\), then \(|f| \) is integrable on \([a, b]\) and \(|\int_a^b f(x)dx| \leq \int_a^b |f(x)|dx. \)

Thm: If \(f : [a, b] \to \mathbb{R} \) with \(c \in (a, b) \) and \(f \) is integrable on \([a, c]\) and \([c, b]\) then \(f \) is integrable on \([a, b]\) with \(\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx. \)

Thm: “Fundamental Theorem of Calculus I” Let \(f \) be a bounded Riemann integrable function on \([a, b]\) and let \(F : [a, b] \to \mathbb{R} \) be defined as \(F(x) = \int_a^x f(t)dt \). Then \(F \) is continuous, and if \(f \) is continuous at a point \(x_0 \), then \(F \) is differentiable at \(x_0 \) with \(F'(x_0) = f(x_0). \)

Def: A function \(f : [a, b] \to \mathbb{R} \) has an antiderivative if there is a continuous function \(F : [a, b] \to \mathbb{R} \) such that \(F'(x) = f(x) \) for all \(x \in [a, b]. \)

Cor: “Fundamental Theorem of Calculus II” Let \(f \) be a continuous function on \([a, b]\). Then \(f \) has an antiderivative.

Moreover, if \(G \) is any antiderivative of \(f \), then \(\int_a^b f(x)dx = G(b) - G(a). \)

Lma: Suppose that \(f : [a, b] \to \mathbb{R} \) is an integrable function bounded by \(M : [a, b] \to \mathbb{R} \). Then \(|\int_a^b f(x)dx| \leq M(b - a). \)

Derrick Stolee
6 INTEGRATION

6.1 Riemann-Stieltjes Integration

Def: Consider $f, g : [a, b] \to \mathbb{R}$. Given a partition $P = \{a = x_0 < x_1 < \cdots < x_n = b\}$ and an evaluation sequence X for P, define the **Riemann-Stieltjes sum** or **R-S sum** for f with respect to g using P and X as $I_g(f, P, X) = \sum_{i=1}^{n} f(x_i)(g(x_i) - g(x_{i-1}))$.

Def: f is **Riemann-Stieltjes integrable** with respect to g ($f \in \mathcal{R}(g)$) if there is a number L so that for all $\varepsilon > 0$, there is a partition P_ε so that for all partitions $P \supseteq P_\varepsilon$ and evaluation sequences X on P, we have $|I_g(f, P, X) - L| < \varepsilon$. In this case, we say L is the **Riemann-Stieltjes integral** of f with respect to g, written $L = \int_a^b f \, dg$.

Thm: If $f_1, f_2 \in \mathcal{R}(g)$ on $[a, b]$ and $c_1, c_2 \in \mathbb{R}$, then $c_1 f_1 + c_2 f_2 \in \mathcal{R}(g)$ on $[a, b]$ and $\int_a^b c_1 f_1 + c_2 f_2 \, dg = c_1 \int_a^b f_1 \, dg + c_2 \int_a^b f_2 \, dg$.

Def: Let $f, g : [a, b] \to \mathbb{R}$ be bounded functions. If $f \in \mathcal{R}(g)$ on $[a, b]$, then $g \in \mathcal{R}(f)$ on $[a, b]$ and $\int_a^b f \, dg + \int_a^b g \, df = \int_a^b f \, df - \int_a^b g \, dg$.

Thm: **Integration by Parts** Let $f, g : [a, b] \to \mathbb{R}$ have $f \in \mathcal{R}(g)$ where $g : [a, b] \to \mathbb{R}$ is C^1, then $f g'$ is Riemann integrable on $[a, b]$ and $\int_a^b f g' \, dx = \int_a^b f(x)g'(x) \, dx$.

Def: Let f, g be bounded functions on $[a, b]$, and P a partition on $[a, b]$. Define

(i) upper sum with respect to g: $U_g(f, P) = \sum_{i=1}^{n} M_i(f_i, P)[g(x_i) - g(x_{i-1})]$.

(ii) lower sum with respect to g: $L_g(f, P) = \sum_{i=1}^{n} m_i(f_i, P)[g(x_i) - g(x_{i-1})]$.

Def: Define $L_g(f) = \sup_P L_g(f, P)$ and $U_g(f) = \inf_P U_g(f, P)$.

LMa: **Refinement Lemma** Let f, g be bounded functions on $[a, b]$ and P, Q partitions of $[a, b]$. Assume that g is increasing. If P is a refinement of Q, then $L_g(f, P) \leq L_g(f, Q) \leq U_g(f, Q) \leq U_g(f, P)$.

Cor: Let f, g be bounded functions on $[a, b]$, and assume that g is increasing. If P and Q are any two partitions of $[a, b]$, then $L_g(f, P) \leq U_g(f, Q)$.

Thm: **Riemann-Stieltjes Condition** Let f, g be bounded functions on $[a, b]$ and assume that g is increasing on $[a, b]$. The following are equivalent:

(i) $f \in \mathcal{R}(g)$. (ii) $U_g(f) = L_g(f)$.

(iii) For every $\varepsilon > 0$ there is a partition P so that $U_g(f, P) - L_g(f, P) < \varepsilon$.

Def: Given a function $f : [a, b] \to \mathbb{R}$ and a partition P of $[a, b]$, the variation of f over P is $V(f, P) = \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|$.

Def: The total variation of f on $[a, b]$ is $V_a^b f = \sup_P V(f, P)$. f is of bounded variation on $[a, b]$ if $V_a^b f$ is finite.

LMa: If $a < b < c$ and $f : [a, c] \to \mathbb{R}$ is given, then $V_a^b f = V_a^c f + V_c^b f$.

Thm: If $f : [a, b] \to \mathbb{R}$ is of bounded variation on $[a, b]$, then there are increasing functions $g, h : [a, b] \to \mathbb{R}$ so that $f = g - h$.

Thm: If $f : [a, b] \to \mathbb{R}$ is bounded by M, $g : [a, b] \to \mathbb{R}$ is of bounded variation and $f \in \mathcal{R}(g)$, then $\left| \int_a^b f \, dg \right| \leq M \cdot V_a^b g$.

Thm: If $f : [a, b] \to \mathbb{R}$ is continuous and $g : [a, b] \to \mathbb{R}$ is increasing, then $f \in \mathcal{R}(g)$ on $[a, b]$.

Cor: If $f : [a, b] \to \mathbb{R}$ is continuous and $g : [a, b] \to \mathbb{R}$ is of bounded variation, then $f \in \mathcal{R}(g)$ on $[a, b]$.

Derrick Stolee
7 VECTORS AND DISTANCE

7.1 Normed Vector Spaces

DEF: Let \(V \) be a vector space over \(\mathbb{R} \). A norm on \(V \) is a function \(||\cdot|| \) on \(V \) taking values in \([0, +\infty)\) with

(i) \(||x|| = 0 \iff x = 0 \).
(ii) \(||\alpha x|| = |\alpha||x|| \).
(iii) \(||x + y|| \leq ||x|| + ||y|| \).

The pair \((V, ||\cdot||)\) is called a normed vector space.

DEF: In a normed vector space \(V \), a sequence \((x_n)_{n=1}^{\infty}\) converges if there is \(x \in V \) so that \(\lim_{n \to \infty} ||x_n - x|| = 0 \).

DEF: A sequence \((x_n)_{n=1}^{\infty}\) is Cauchy if \((||x_n||)_{n=1}^{\infty}\) is Cauchy. That is, \(\lim_{n \to \infty} \sup_{m \geq n} ||x_n - x_m|| = 0 \).

DEF: \(V \) is complete if every Cauchy sequence in \(V \) converges to some vector \(x \in V \). A complete normed vector space is called a Banach space.

DEF: For a normed vector space \(V \), define the open ball \(B_r(x) = \{v \in V \mid ||v - x|| < r\} \). A subset \(U \subseteq V \) is open if for every \(a \in U \) there is \(r > 0 \) so that \(B_r(a) \subseteq U \). A subset \(C \subseteq V \) is closed if it contains all of its limit points.

PROP: A sequence \(x_n \) in a normed vector space \(V \) converges to a vector \(x \) if and only if for each open set \(U \) containing \(x \), there is an integer \(N \) so that \(x_n \in U \) for all \(n \geq N \).

DEF: A subset \(K \) of a normed vector space \(V \) is compact if every sequence \((x_n)\) of points in \(K \) has a convergent subsequence.

7.2 Inner Product Spaces

DEF: An inner product on a vector space \(V \) is a function \(\langle \cdot, \cdot \rangle \) so that

(i) \(\langle x, x \rangle \geq 0 \), and \(\langle x, x \rangle = 0 \) if and only if \(x = 0 \).
(ii) \(\langle x, y \rangle = \langle y, x \rangle \).
(iii) For all \(x, y, z \in V, a, b \in \mathbb{R} \), \(\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle \). An inner product defines a norm on \(V \) given by \(||x|| = \langle x, x \rangle^{1/2} \).

EX: The space \(C[0,1] \) can be given an inner product \(\langle f, g \rangle = \int_a^b f(x)g(x)dx \).

THM: “Cauchy-Schwarz Inequality” For all \(x, y \) in an inner product space \(V \), \(||\langle x, y \rangle|| \leq ||x|| ||y|| \). Equality holds if and only if \(x, y \) are colinear.

COR: For \(f, g \in C[a, b] \), we have \(\left| \int_a^b f(x)g(x)dx \right| \leq \left(\int_a^b f(x)^2dx \right)^{1/2} \left(\int_a^b g(x)^2dx \right)^{1/2} \).

COR: An inner product space \(V \) satisfies the triangle inequality. Moreover, if equality occurs, then \(x \) and \(y \) are colinear.

COR: Let \(V \) be an inner product space with induced norm \(||\cdot|| \). Then the inner product is continuous (i.e. \(x_n \to x \) and \(y_n \to y \), then \(\langle x_n, y_n \rangle \to \langle x, y \rangle \)).

DEF: A normed vector space is strictly convex if \(||u|| = ||v|| = \frac{1}{2} ||(u + v)|| = 1 \) for vectors \(u, v \in V \) implies that \(u = v \).

PROP: All inner product spaces are strictly convex.

7.3 Orthonormality

DEF: Two vectors \(x \) and \(y \) are orthogonal if \(\langle x, y \rangle = 0 \). A collection of vectors \(\{v_i \mid i \in I\} \) in \(V \) are orthonormal if \(||v_i|| = 1 \) and \(\langle v_i, v_j \rangle = \delta_{ij} \). This set is called an orthonormal basis if it is a maximal orthonormal set.

PROP: An orthonormal set is linearly independent. An orthonormal basis in a finite-dimensional inner product space is a basis.

LMA: The functions \(\{1, \sqrt{2} \sin n\theta, \sqrt{2} \cos n\theta \mid n \geq 1\} \) form an orthonormal set in \(C[-\pi, \pi] \) with the inner product \(\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta)g(\theta) \, d\theta \).

DEF: A trigonometric polynomial is a finite sum \(f(\theta) = A_0 + \sum_{k=1}^{N} A_k \cos k\theta + B_k \sin k\theta \).

DEF: Denote the Fourier series of \(f \in C[-\pi, \pi] \) by \(f \sim A_0 + \sum_{n=1}^{\infty} A_n \cos n\theta + B_n \sin n\theta \), where \(A_0 = \langle f, 1 \rangle \), \(A_n = \langle f, \sqrt{2} \cos n\theta \rangle \), \(B_n = \langle f, \sqrt{2} \sin n\theta \rangle \). The sequences \(A_n \) and \(B_n \) are the Fourier coefficients of \(f \).

LMA: Let \(\{v_1, \ldots, v_n\} \) be an orthonormal set in an inner product space \(V \). If \(M \) is the subspace spanned by \(\{v_1, \ldots, v_n\} \), then every vector \(x \in M \) can be written uniquely as \(\sum_{i=1}^{n} a_i v_i \), where \(a_i = \langle x, v_i \rangle \). Moreover, for \(x, y \in M \) with \(a_i = \langle x, v_i \rangle, b_i = \langle y, v_i \rangle, \langle x, y \rangle = \sum_{i=1}^{n} a_i b_i \). In particular, \(||x||^2 = \sum_{i=1}^{n} a_i^2 \).

COR: If \(V \) is an inner product space of finite dimension \(n \), then it has an orthonormal basis \(\{v_1, \ldots, v_n\} \) and the inner product and norm are defined by the lemma.

Derrick Stolee
7.4 Projections

DEF: A projection is a linear map \(P \) so that \(P^2 = P \). In addition, \(P \) is an orthogonal projection if \(\ker P \perp \im P \).

THM: "Projection Theorem" Let \(B = \{v_1, \ldots, v_n\} \) be an orthonormal set in an inner product space \(V \) and let \(M = \text{span} B \). Define \(P : V \to M \) by \(Py = \sum_{i=1}^{n} \langle y, v_i \rangle v_i \). Then \(P \) is the orthogonal projection onto \(M \) and \(\|y\|^2 = \sum_{i=1}^{n} \langle y, v_i \rangle^2 \).

Moreover, for all \(v \in M \), \(\|y-v\|^2 = \|y-Py\|^2 + \|Py-v\|^2 \). In particular, \(Py \) is the closest vector in \(M \) to \(y \).

THM: "Bessel's Inequality" Let \(\{v_i | i \in I\} \) be an orthonormal set in an inner product space \(V \). For each vector \(x \in V \), \(\sum_{i \in I} |\langle x, v_i \rangle|^2 \leq \|x\|^2 \).

DEF: A complete inner product space is called a Hilbert space.

EX: The space \(l^2 \) consists of all sequences \(x = (x_n)_{n=1}^{\infty} \) such that \(\|x\|_2 = (\sum_{n=1}^{\infty} x_n^2)^{1/2} \) is finite. The inner product on \(l^2 \) is given by \(\langle x, y \rangle = \sum_{n=1}^{\infty} x_n y_n \).

THM: The space \(l^2 \) is complete.

DEF: In a Hilbert space, the closed span of a set of vectors \(S \), denoted \(\overline{\text{span}} S \) is the closure of the linear subspace spanned by \(S \).

THM: "Parseval's Theorem" Let \(I \subseteq \mathbb{N} \) and \(E = \{v_i | i \in I\} \) be an orthonormal set in a Hilbert space \(H \). Then the subspace \(M = \overline{\text{span}} E \) consists of all vectors \(x = \sum_{i \in I} a_i v_i \) where the coefficient sequence \((a_i)_{i=1}^{\infty} \) belongs to \(l^2 \).

Further, if \(x \in H \), then \(x \in M \) if and only if \(\sum_{i \in I} |\langle x, v_i \rangle|^2 = \|x\|^2 \).

COR: Let \(E = \{v_i | i \in I\} \) be an orthonormal set in a Hilbert space \(H \). Then there is a continuous linear orthogonal projection \(P_E \) of \(H \) onto \(M = \overline{\text{span}} E \) given by \(P_E x = \sum_{i \in I} \langle x, v_i \rangle v_i \).

COR: If \(E = \{v_i | i \in \mathbb{N}\} \) is an orthonormal basis for a Hilbert space \(H \), every vector \(x \in H \) may be uniquely expressed as \(x = \sum_{i=1}^{\infty} a_i v_i \) where \(a_i = \langle x, v_i \rangle \).

DEF: If \(M \) is a closed subspace of a Hilbert space \(H \), define the orthogonal complement of \(M \) to be \(M^\perp = \{x | \langle x, v \rangle = 0 \forall v \in M\} \).

PRO: Every vector in \(H \) can be written uniquely as \(x = v + y \) where \(v \in M \) and \(y \in M^\perp \). Moreover, \(\|x\|^2 = \|v\|^2 + \|y\|^2 \).

PRO: \((M^\perp)^\perp = M \).

7.5 Finite Dimensions

LMA: If \(\{v_1, \ldots, v_n\} \) is a linearly independent set in a normed vector space \(V \), then there exist positive constants \(0 < c < C \) so that for all \(a \in \mathbb{R}^n \) we have \(c\|a\| \leq \|\sum_{i=1}^{n} a_i v_i\| \leq C\|a\| \).

COR: "Hilbert-Borel for Finite-Dimensional Normed Vector Spaces" A subset of a finite-dimensional normed vector space is compact if and only if it is closed and bounded.

COR: A finite-dimensional subspace of a normed vector space is complete, and in particular it is closed.

THM: Let \(V \) be a normed vector space, and let \(W \) be a finite dimensional subspace of \(V \). Then for any \(v \in V \) there is at least one closest point \(w^* \in W \) so that \(\|v - w^*\| = \inf \{\|v - w\| | w \in W\} \).
7.6 Limits Of Functions

DEF: Let \((f_k)\) be a sequence of functions from \(S \subseteq \mathbb{R}^n\) into \(\mathbb{R}^m\). This sequence converges pointwise to a function \(f\) if \(\lim_{n \to \infty} f_n(x) = f(x)\) for all \(x \in S\).

DEF: Let \((f_k)\) be a sequence of functions from \(S \subseteq \mathbb{R}^n\) to \(\mathbb{R}^m\). This sequence converges uniformly to \(f\) if for every \(\varepsilon > 0\) there is \(N \in \mathbb{N}\) so that for all \(n \geq N\) and all \(x \in S\), \(\|f_n(x) - f(x)\| < \varepsilon\).

THM: For a sequence of functions \((f_n)\) in \(C_b(S, \mathbb{R}^m)\), \((f_n)\) converges uniformly to \(f\) if and only if \(\lim_{n \to \infty} \|f_n - f\|_\infty = 0\).

THM: “Dini’s Theorem” Suppose that \(f\) and \(f_n\) are continuous functions on \([a, b]\) so that \(f_n \leq f_{n+1}\) for all \(n \geq 1\) and \((f_n)\) converges to \(f\) pointwise. Then \((f_n)\) converges to \(f\) uniformly.

THM: Let \((f_k)\) be a sequence of continuous functions mapping a subset \(S \subseteq \mathbb{R}^n\) to \(\mathbb{R}^m\) that converges uniformly to a function \(f\). Then \(f\) is continuous.

THM: “Completeness Theorem for \(C(K)\)” If \(K\) is a compact set, the space \(C(K)\) of all continuous functions on \(K\) with the \(\infty\) norm is complete.

THM: “Integral Convergence Theorem” Let \((f_k)\) be a sequence of continuous functions on \([a, b]\) converging uniformly to \(f(x)\) and fix \(c \in [a, b]\). Then the functions \(F_k(x) = \int_a^c f_k(t)dt\), \(k \geq 1\) converge uniformly on \([a, b]\) to the function \(F(x) = \int_a^c f(t)dt\).

COR: Suppose that \((f_n)\) is a sequence of continuously differentiable functions on \([a, b]\) such that \((f_n')\) converges uniformly to a function \(g\) and there is a point \(c \in [a, b]\) so that \(\lim_{n \to \infty} f_n(c) = \gamma\) exists. Then \((f_n)\) converges uniformly to a differentiable function \(f\) with \(f'(x) = \gamma\) and \(f'(c) = g\).

PROP: Let \(f(x, t)\) be a continuous function on \([a, b] \times [c, d]\). Define \(F(x) = \int_c^d f(x, t)dt\). Then \(F\) is continuous on \([a, b]\).

THM: “Liebniz’s Rule” Suppose that \(f(x, t)\) and \(\frac{\partial f}{\partial x}(x, t)\) are continuous functions on \([a, b] \times [c, d]\). Then \(F(x) = \int_c^d f(x, t)dt\) is differentiable and \(F'(x) = \int_c^d \frac{\partial f}{\partial x}(x, t)dt\).

THM: Let \((f_k)\) be a sequence of functions from \(S \subseteq \mathbb{R}^n\) to \(\mathbb{R}^m\). If \(\sum_{k=1}^{\infty} f_k(x)\) converges uniformly, then it is continuous.

DEF: Let \(S \subseteq \mathbb{R}^n\). We say that a sequence of functions \(f_k\) from \(S\) to \(\mathbb{R}^m\) is uniformly Cauchy on \(S\) if for every \(\varepsilon > 0\), there is an \(N\) so that \(\sum_{k=m+1}^{\infty} f_k(x)\) is uniformly Cauchy on \(S\).

THM: “Weierstrass M-Test” Suppose that \(a_n(x)\) is a sequence of functions on \(S \subseteq \mathbb{R}^k\) to \(\mathbb{R}^m\) and \((M_n)\) is a sequence of real numbers so that \(\|a_n\|_\infty \leq M_n\). If \(\sum_{n=1}^{\infty} M_n\) converges, then \(\sum_{n=1}^{\infty} a_n(x)\) converges uniformly on \(S\).

THM: “Hadamard’s Theorem” Given a power series \(\sum_{n=0}^{\infty} a_n x^m\) there is \(R\) in \([0, +\infty)\) so that the series converges for all \(x\) with \(|x| < R\) and diverges for all \(x\) with \(|x| > R\). Moreover, the series converges uniformly on each interval \([a, b]\) contained in \((-R, R)\). Finally, if \(\alpha = \limsup_{n \to \infty} |a_n|^{1/m}\), then

\[
R = \begin{cases} \infty & \text{if } \alpha = 0 \\ 0 & \text{if } \alpha = +\infty \\ \frac{1}{\alpha} & \text{if } \alpha \in (0, +\infty) \\
\end{cases}
\]

We call \(R\) the radius of convergence of the power series.

THM: “Term-By-Term Differentiation” If \(f(x) = \sum_{m=0}^{\infty} a_n x^n\) has radius of convergence \(R > 0\), then \(\sum_{m=1}^{\infty} na_n x^{n-1}\) has radius of convergence \(R\), \(f\) is differentiable on \((-R, R)\), and for \(x \in (-R, R)\), \(f'(x) = \sum_{n=1}^{\infty} na_n x^{n-1}\). Further,

\[
\sum_{m=0}^{\infty} \frac{a_m}{m+1} x^{m+1}
\]

has radius of convergence \(R\) and, for \(x \in (-R, R)\), \(\int_0^x f(t)dt = \sum_{m=0}^{\infty} \frac{a_m}{m+1} x^{m+1}\).

7.7 Compactness of \(S \subseteq C(K, \mathbb{R}^m)\)

DEF: A family of functions \(\mathcal{F}\) mapping \(S \subseteq \mathbb{R}^n\) into \(\mathbb{R}^m\) is equicontinuous at a point \(a \in S\) if for every \(\varepsilon > 0\) there is an \(r > 0\) such that \(||f(x) - f(a)|| < \varepsilon\) whenever \(||x - a|| < r\) and \(f \in \mathcal{F}\). The family \(\mathcal{F}\) is equicontinuous on \(S\) if it is equicontinuous at every \(a \in S\). The family \(\mathcal{F}\) is uniformly equicontinuous on \(S\) if for each \(\varepsilon > 0\), there is an \(r > 0\) so that \(||f(x) - f(y)|| < \varepsilon\) whenever \(||x - y|| < r\) and \(f \in \mathcal{F}\).

LMA: Let \(K\) be a compact subset of \(\mathbb{R}^m\). A compact subset \(\mathcal{F}\) of \(\mathcal{C}(K, \mathbb{R}^m)\) is equicontinuous.

PROP: If \(\mathcal{F}\) is an equicontinuous family of functions on a compact set, then it is uniformly equicontinuous.

DEF: A subset \(S\) of \(K\) is called an \(\varepsilon\)-net of \(K\) if \(K \subseteq \bigcup_{a \in S} B_\varepsilon(a)\). A set \(K\) is totally bounded if it has a finite \(\varepsilon\)-net for every \(\varepsilon > 0\).

LMA: Let \(K\) be a compact subset of \(\mathbb{R}^m\). Then \(K\) is totally bounded.

COR: Let \(K\) be a compact subset of \(\mathbb{R}^m\). Then \(K\) contains a sequence \(\{x_i\}_{i \geq 1}\) that is dense in \(K\). Moreover, for any \(\varepsilon > 0\), there is an integer \(N\) so that \(\{x_1, \ldots, x_N\}\) forms an \(\varepsilon\)-net for \(K\).

Derrick Stolee
Thm: “Arzela-Ascoli Theorem” Let K be a compact subset of \mathbb{R}^n. A subset F of $C(K, \mathbb{R}^m)$ is compact if and only if it is closed, bounded, and equicontinuous.
NOTES

Analysis Study Guide

Derrick Stolee
8 Problems

Question: Define a sequence \((x_n)\) by \(x_1 = 2\) and, for \(n \geq 2\), \(x_n = 1 + \frac{1}{x_{n-1}}\). Show that there is an integer \(m\) so that \(x_m \cdots x_{m+1} > 100\).

Question: Fix an integer \(N \geq 2\). Consider the remainders \(q(n)\) obtained by dividing the Fibonacci number \(F(n)\) by \(N\), so that \(0 \leq q(n) < N\). Prove that this sequence is periodic with period \(d \leq N^2\) as follows:

(i) Show that there are integers \(0 \leq i < j \leq N^2\) such that \(q(i) = q(j)\) and \(q(i + 1) = q(j + 1)\).

(ii) Show that if \(q(i + d) = q(i)\) and \(q(i + 1 + d) = q(i + 1)\), then \(q(n + d) = q(n)\) for all \(n \geq i\). (iii) Show that if \(q(i + d) = q(i)\) and \(q(i + 1 + d) = q(i + 1)\), then \(q(n + d) = q(n)\) for all \(n \geq 0\).

Question: If \(m\) and \(n\) are integers, show that \(\left|\frac{\sqrt{3} - \frac{n}{m}}{\sqrt{3}}\right| \geq \frac{1}{m^2}\).

Question: Compute the limit, and for \(\varepsilon = 10^{-6}\), find an integer \(N\) that satisfies the limit equation: \(\lim_{n \to \infty} \frac{n^2 + 2n + 1}{2m^2 - n^2 + 2} = 2\).

Optional: What is the smallest value of \(N\) that satisfies the limit definition for \(\varepsilon = 10^{-6}\)?

Question: (i) Prove that if \(a_n \leq b_n\) for \(n \geq 1\), \(L = \lim_{n \to \infty} a_n\) and \(M = \lim_{n \to \infty} b_n\), then \(L \leq M\).

(ii) Find convergent sequences \((a_n)\) and \((b_n)\) so that

(a) \(a_n \leq b_n\) for all \(n\), (b) there is no \(N\) so that for all \(n \geq N\), \(a_n \leq \lim b_n\), and

(c) there is no \(N\) so that for all \(n \geq N\), \(b_n \geq \lim_{n \to \infty} a_n\).

Question: Consider \((x_1, x_2, \ldots)\) and \((y_1, y_2, \ldots)\). Show that the new sequence \((x_1, y_2, x_2, y_3, \ldots)\) converges to a number \(L\) if and only if the two original sequences both converge to \(L\).

Question: Define a sequence \((a_n)_{n=1}^\infty\) so that \(\lim_{n \to \infty} a_n = a\) exists but \(\lim_{n \to \infty} a_n = b\) does not exist.

Question: (i) Let \(x_n = \sqrt[n]{n} - 1\). Use the fact that \((1 + x_n)^n = n\) to show that \(x_n^2 \leq 2/n\).

(ii) Hence compute \(\lim_{n \to \infty} x_n\).

Question: Show that the set \(S = \{ n + m\sqrt{2} | m, n \in \mathbb{Z} \}\) is dense in \(\mathbb{R}\).

Question: Suppose that \(\lim_{n \to \infty} a_n = L\). Show that \(\lim_{n \to \infty} \frac{a_1 + a_2 + \cdots + a_n}{n} = L\).

Question: (i) Let \((a_n)_{n=1}^\infty\) be a bounded sequence. Define a sequence \(b_n = \sup\{a_k : k > n\}\) for \(n \geq 1\). Prove that \((b_n)\) converges. This limit is called the **limit superior** of \((a_n)\), almost always abbreviated to \(\limsup a_n\).

(ii) Without redoing the proof, do the same for the **limit inferior** of \((a_n)\), which is defined as \(\liminf a_n := \lim_{n \to \infty} (\inf_{k \geq n} a_k)\).

Question: Given two sequences of real numbers \((x_n)\) and \((y_n)\), prove that \(\lim sup(x_n + y_n) \leq \lim sup x_n + \lim sup y_n\).

Give an example where all three \(\lim sup's\) are finite and the inequality is strict.

Question: Define \(x_1 = 2\) and \(x_{n+1} = \frac{1}{2}(x_n + 5/x_n)\) for \(n \geq 1\).

(i) Find a formula for \(x_{n+1}^2 - 5\) in terms of \(x_n^2 - 5\).

(ii) Hence evaluate \(\lim_{n \to \infty} x_n\).

(iii) Compute the first ten terms on a calculator.

(iv) Show that the tenth term approximates the limit to over 600 decimal places.

Question: Construct a sequence \((x_n)_{n=1}^\infty\) so that for every real number \(L\), there is a subsequence \((x_{n_k})_{k=1}^\infty\) with \(\lim_{k \to \infty} x_{n_k} = L\).

Question: Suppose that \((a_n)\) is a sequence such that \(a_{2n} \leq a_{2n+2} \leq a_{2n+3} \leq a_{2n+1}\) for all \(n \geq 0\). Show that this sequence is Cauchy if and only if \(\lim_{n \to \infty} |a_n - a_{n+1}| = 0\).

Question: Suppose that, for a sequence \((a_n)\), there is \(\lambda \in (0, 1)\) so that \(|a_{n+2} - a_{n+1}| \leq \lambda |a_{n+1} - a_n|\). Show that \((a_n)\) is Cauchy.

Question: (i) Show that a sequence \((a_n)_{n=1}^\infty\) converges if and only if \(\lim sup a_n = \lim inf a_n\).

(ii) Suppose a sequence \((a_n)\) has the property that for any sequence \((b_n)\), we have \(\lim sup a_n + b_n = \lim sup a_n + \lim sup b_n\). Show that \((a_n)\) converges.

Question: Find the sum of \(\sum_{n=1}^\infty \frac{1}{2(n+1)^2}\).

Question: Construct a convergent series of positive terms with \(\lim sup \frac{a_{n+1}}{a_n} = \infty\).

Question: If \(a_n \geq 0\) for all \(n\), prove that \(\sum_{n=1}^\infty a_n\) converges if and only if \(\sum_{n=1}^\infty \frac{a_n}{1+a_n}\) converges.

Question: Suppose that \((a_n)\) is a strictly decreasing positive sequence, i.e., \(0 < a_{n+1} < a_n\) for all \(n\).

(i) Suppose that \((g_k)\) is a strictly increasing sequence of integers and there is a constant \(C\) so that for \(k = 2, 3, \ldots\), we have \(g_{k+1} - g_k \leq C(g_k - g_{k-1})\). Prove that \(\sum_{k=1}^\infty a_k\) converges if and only if \(\sum_{k=1}^\infty (g_{k+1} - g_k) a_{g_k}\) converges.

(ii) By a suitable choice of \((g_k)\), prove that \(\sum_{k=1}^\infty a_k\) converges if and only if \(\sum_{k=1}^\infty 2^k a_{2^n}\) converges.

(iii) Similarly, prove that \(\sum_{k=1}^\infty a_k\) converges if and only if \(\sum_{k=1}^\infty k a_{k}\) converges.

Question: Suppose \((a_n)\) is a decreasing positive sequence, i.e. \(0 < a_{n+1} \leq a_n\).

(i) Prove that if \(\sum_{n=1}^\infty a_n\) converges, then \(\lim_{n \to \infty} n a_n = 0\).

(ii) Give a sequence \((a_n)\) as above so that \(\lim_{n \to \infty} n a_n = 0\) but \(\sum_{n=1}^\infty a_n\) diverges.

Derrick Stolee
Question: Use summation by parts to prove Abell’s Test: Suppose that \(\sum_{n=1}^{\infty} a_n \) converges and \((b_n)\) is a monotonic convergent sequence. Show that \(\sum_{n=1}^{\infty} a_n b_n \) converges.\(^{178}\)

Question: Suppose that \(x \) and \(y \) are unit vectors in \(\mathbb{R}^n \). Show that if \(\|x+y\| = 1 \), then \(x = y \).

Question: (i) Show that if \((x_n)_{n=1}^{\infty}\) is a sequence in \(\mathbb{R}^n \) such that \(\sum_{n=1}^{\infty} \|x_n - x_{n+1}\| < \infty \), then \((x_n)\) is Cauchy.

(ii) Give an example of a Cauchy sequence for which this condition fails.

(iii) However, show that every Cauchy sequence \((x_n)_{n=1}^{\infty}\) has a subsequence \((x_{n_k})_{k=1}^{\infty}\) such that \(\sum_{k=1}^{\infty} \|x_{n_k} - x_{n_{k+1}}\| < \infty \).

Question: Suppose that \(x = (x_1, x_2, \ldots) \) and \(y = (y_1, y_2, \ldots) \) are sequences so that \(\sum_{n=1}^{\infty} x_n^2 \) and \(\sum_{n=1}^{\infty} y_n^2 \) converge.

Show that \(\sum_{n=1}^{\infty} x_n y_n \leq \left(\sum_{n=1}^{\infty} x_n^2 \right)^{1/2} \left(\sum_{n=1}^{\infty} y_n^2 \right)^{1/2} \). In particular, you are showing that the series on the left-hand side converges.

Question: (i) Show that the sum of a closed subset and a compact subset of \(\mathbb{R}^n \) is closed. Recall that \(A + B = \{ a + b \mid a \in A, b \in B \} \).

(ii) Is this true for the sum of two compact sets and a closed set?

(iii) Is this true for the sum of two closed sets?

Question: Let \((x_n)_{n=1}^{\infty}\) be a sequence in a compact set \(K \) that is not convergent. Show that there are two subsequences of this sequence that are convergent to different limit points.

Question: Let \(A \) and \(B \) be disjoint closed subsets of \(\mathbb{R}^n \). Define \(d(A, B) = \inf \{ \|a - b\| \mid a \in A, b \in B \} \).

(i) If \(A = \{ a \} \) is a singleton, show that \(d(A, B) > 0 \).

(ii) If \(A \) is compact, show that \(d(A, B) > 0 \).

(iii) Find an example of two disjoint closed sets in \(\mathbb{R}^2 \) with \(d(A, B) = 0 \).

Question: Define a function on the set \(S = \{ 0 \} \cup \{ \frac{1}{n} \mid n \geq 1 \} \) by \(f\left(\frac{1}{n}\right) = a_n \) and \(f(0) = L \). Prove that \(f \) is continuous on \(S \) if and only if \(\lim_{n \to \infty} a_n = L \).

Question: Find a bounded continuous function on \(\mathbb{R} \) that is not Lipschitz.

Question: Suppose that \(A \subseteq \mathbb{R}^n \) and \(B \subseteq \mathbb{R}^m \) are open. Show that the set

\[
A \times B = \{ (x_1, \ldots, x_{n+m}) \mid (x_1, \ldots, x_n) \in A, (x_{n+1}, \ldots, x_{n+m}) \in B \}
\]

is open in \(\mathbb{R}^{n+m} \).

Question: Define \(f \) on \(\mathbb{R} \) by \(f(x) = x \chi_\mathbb{Q}(x) \), where \(\chi_\mathbb{Q}(x) \) is the characteristic function on \(\mathbb{Q} \). Show that \(f \) is continuous at 0 and that this is the only point where it is continuous.

Question: Let \(f \) and \(g \) be continuous mappings of \(S \subseteq \mathbb{R}^n \) into \(\mathbb{R}^m \). Show that the inner product \(h(x) = \langle f(x), g(x) \rangle \) is continuous.

Question: Suppose that \(f \) is a continuous function on \([a, b]\) and \(g \) is a continuous function on \([b, c]\) such that \(f(b) = g(b) \).

Show that

\[
h(x) = \begin{cases} f(x) & \text{if } a \leq x \leq b \\ g(x) & \text{if } b \leq x \leq c \end{cases}
\]

is continuous on \([a, c]\).

Question: Give an example of a continuous function \(f \) and an open set \(U \) such that \(f(U) \) is not open.

Question: (January 2007 Qual) Let \(f \) be a positive continuous function defined on \(\mathbb{R} \) such that \(\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 0 \). Show that \(f \) attains its maximum value, that is there is \(b \in \mathbb{R} \) so that \(f(b) = \sup f(\mathbb{R}) \).

Question: Let \(f \) be a continuous function on \((0, 1] \). Show that \(f \) is uniformly continuous if and only if \(\lim_{x \to 0^+} f(x) \) exists.

Question: Let \(f \) be a continuous function from \(B = \{ x \in \mathbb{R}^2 \mid \|x\| \leq 1 \} \), the closed ball in \(\mathbb{R}^2 \), into \(\mathbb{R} \). Show that \(f \) cannot be one-to-one.

Question: or \(x \in [0, 1] \), express it as a decimal \(x = x_0.x_1x_2x_3 \ldots \). Use a finite decimal expansion without repeating 9s when there is a choice. Then define a function \(f \) by \(f(x) = x_0.0x_10x_20x_3 \ldots \).

(i) Show that \(f \) is strictly increasing.

(ii) Compute \(\lim_{x \to 0^+} f(x) \).

(iii) Show that \(\lim_{x \to a^+} f(x) = f(a) \) for \(0 \leq a < 1 \).

(iv) Find all discontinuities of \(f \).

Question: Let \(f \) be a real uniformly continuous function on the bounded set \(E \subseteq \mathbb{R} \). Prove that \(f \) is bounded on \(E \).

Show that the conclusion may be false if boundedness of \(E \) is not assumed.

Derrick Stolee
QUESTION: Define \(f : \mathbb{R} \rightarrow \mathbb{R} \) by

\[
f(x) = \begin{cases}
0 & \text{if } x \notin \mathbb{Q} \\
\frac{1}{x^2} & \text{if } x = \frac{p}{q} \text{ in lowest terms, and } q > 0.
\end{cases}
\]

Show that \(f'(\sqrt{3}) \) exists and is zero. (Hint: Exercise 2.2.H could be useful).

QUESTION: Suppose that \(f : [0, +\infty) \rightarrow \mathbb{R} \) is twice differentiable on \([0, +\infty)\) and satisfies \(f(0) = 0, f'(0) = 1, \) and \(f''(x) \leq 0 \) for all \(x \).

(i) Prove that \(f(x) \leq x \) for all \(x > 0 \).

(ii) Prove that \(f(x)/x \) is decreasing on \((0, +\infty)\).

QUESTION: Suppose that \(f \) is continuous on an interval \([a, b]\) and is differentiable at all points of \((a, b)\) except possibly at a single point \(x_0 \in (a, b)\). If \(\lim_{x \to x_0} f'(x) \) exists, show that \(f'(x_0) \) exists and \(f'(x_0) = \lim_{x \to x_0} f'(x) \). (Hint: Consider the intervals \([x_0 - h, x_0]\) and \([x_0, x_0 + h]\).)

QUESTION: Suppose that \(f \) is differentiable on \([a, b]\) and \(f'(a) < 0 < f'(b) \).

(i) Show that there are points \(a < c < d < b \) such that \(f(c) < f(a) \) and \(f(d) < f(b) \).

(ii) Show that the minimum on \([a, b]\) occurs at an interior point.

(iii) Hence show that there is a point \(x_0 \in (a, b) \) such that \(f'(x_0) = 0 \).

QUESTION: Suppose that \(f : [a, b] \rightarrow \mathbb{R} \) is integrable and \(g : [a, b] \rightarrow \mathbb{R} \) has \(g(x) = f(x) \) for all \(x \) in \([a, b]\) except at \(c_0, \ldots, c_n \). Prove that \(g \) is integrable and \(\int_a^b g(x)dx = \int_a^b f(x)dx \).

QUESTION: Suppose that \(f \) is Lipschitz with constant \(L \) on \([0, 1]\). Prove that

\[
\left| \int_0^1 f(x)dx - \frac{1}{n} \sum_{j=1}^n f \left(\frac{j}{n} \right) \right| \leq \frac{L}{n}.
\]

QUESTION: If \(f \) and \(g \) are both Riemann integrable on \([a, b]\), show that \(fg \) is also integrable. (Hint: Use the identity \(f(x)g(x) - f(t)g(t) = f(x)(g(x) - g(t)) + (f(x) - f(t))(g(t)) \) to show that \(M_i(f, g, P) - m_i(f, g, P) \) is bounded by \(\|f\| \cdot (M_i(g, P) - m_i(g, P)) + \|g\| \cdot (M_i(f, P) - m_i(f, P)) \)).

QUESTION: Let \(f \) be a continuous function on \(\mathbb{R} \), and fix \(\varepsilon > 0 \). Define a function \(G \) by

\[
G(x) = \frac{1}{\varepsilon} \int_x^{x+\varepsilon} f(t)dt.
\]

Show that \(G \) is \(C^1 \) and compute \(G' \).

Notes

\footnotesize{\(^{174}\)D&D, 3.2.K. \(^{175}\)D&D, 3.2.N. \(^{176}\)Donsig, 825 Problem Set 5, # 3. \(^{177}\)Donsig, 825 Problem Set 5, # 4. \(^{178}\)D&D, 3.4.G.

Derrick Stolee}