Lemma 3.1

Dan Richmond, Jolie Roat

IMMERSE 2009, UNL

July, 2009
Lemma 3.1

Assume there is a (nontrivial) discrete valuation ν on K and an ideal μ of D such that D/μ is finite. Then, for every integer $n \geq 1$, there exists a product of q irreducible elements of $\text{Int}(D)$ with values in μ^n, where q is the cardinal of D/μ.
Discrete Valuation

Definition
Let G be a group isomorphic to \mathbb{Z}. A discrete valuation on a field K is a function $\nu : K^* \rightarrow G$ satisfying

- ν is surjective
- $\nu(xy) = \nu(x) + \nu(y)$, for all $x, y \in K^*$
- $\nu(x + y) \geq \min\{\nu(x), \nu(y)\}$, for all $x, y \in K^*$ with $x + y \neq 0$.

Show $\exists b \in \mu$ such that $\nu(b) \neq 0$
Outline

1. Show $\exists b \in \mu$ such that $\nu(b) \neq 0$
2. Construct a set of irreducible polynomials $f_i \in \text{Int}(D)$
1. Show $\exists b \in \mu$ such that $\nu(b) \neq 0$

2. Construct a set of irreducible polynomials $f_i \in \text{Int}(D)$

3. Prove for every $\alpha \in D$

$$\prod_{i=0}^{q-1} f_i(\alpha) \in \mu^n.$$

where q is the cardinal of D/μ
Show $\exists b \in \mu$ such that $\nu(b) \neq 0$

Proof.

Since ν is nontrivial, $\exists x \in D$ such that $\nu(x) \neq 0$. Then, let $y \in \mu$.

- Case 1: $\nu(y) \neq 0$. Then take $b = y$.

Show $\exists b \in \mu$ such that $\nu(b) \neq 0$

Proof.

Since ν is nontrivial, $\exists x \in D$ such that $\nu(x) \neq 0$. Then, let $y \in \mu$.

- Case 1: $\nu(y) \neq 0$. Then take $b = y$.
- Case 2: $\nu(y) = 0$. Let $b = xy$. Then,

$$\nu(b) = \nu(xy) = \nu(x) + \nu(y) = \nu(x) + 0$$

Then, $\nu(x) \neq 0$, so $\nu(b) \neq 0$ and $b = xy \in \mu$ by the definition of an ideal.
Construct a set of irreducible polynomials $f_i \in \text{Int}(D)$

Proof.

Let $u_0, u_1, \ldots, u_{q-1}$ be representatives of D/μ.
Consider m to be an integer prime to $n\nu(b)$.

Note:

\[
 n\nu(b) = \nu(b) + \nu(b) + \ldots + \nu(b) = \nu(b^n)
\]

Hence, m is an integer prime to $\nu(b^n)$ so by Proposition 2.7, the polynomials $f_i = (X - u_i)^m + b^n$ are irreducible in $\text{Int}(D)$. \qed
Prove for every $\alpha \in D$, $\prod_{i=0}^{q-1} f_i(\alpha) \in \mu^n$.

Proof.
Consider $m > n$. Then, $\forall \alpha \in D$, $\exists i$ where $1 \leq i \leq q - 1$ such that $(\alpha - u_i) \in \mu$.
Prove for every $\alpha \in D$, $\prod_{i=0}^{q-1} f_i(\alpha) \in \mu^n$.

Proof.

Consider $m > n$. Then, $\forall \alpha \in D$, $\exists i$ where $1 \leq i \leq q - 1$ such that $(\alpha - u_i) \in \mu$. Then,

$$f_i(\alpha) = (\alpha - u_i)^m + b^n$$
Prove for every $\alpha \in D$, $\prod_{i=0}^{q-1} f_i(\alpha) \in \mu^n$.

Proof.

Consider $m > n$. Then, $\forall \alpha \in D$, $\exists i$ where $1 \leq i \leq q - 1$ such that $(\alpha - u_i) \in \mu$. Then,

$$f_i(\alpha) = (\alpha - u_i)^m + b^n = (\alpha - u_i)^n(\alpha - u_i)^{m-n} + b^n \in \mu^n$$

Hence, for every $\alpha \in D$, there exists an i such that $f_i(\alpha) \in \mu^n$.
Prove for every $\alpha \in D$, $\prod_{i=0}^{q-1} f_i(\alpha) \in \mu^n$.

Proof.

Consider $m > n$. Then, $\forall \alpha \in D$, $\exists i$ where $1 \leq i \leq q - 1$ such that $(\alpha - u_i) \in \mu$. Then,

$$f_i(\alpha) = (\alpha - u_i)^m + b^n = (\alpha - u_i)^n(\alpha - u_i)^{m-n} + b^n \in \mu^n$$

Hence, for every $\alpha \in D$, there exists an i such that $f_i(\alpha) \in \mu^n$. Then, $\prod_{i=0}^{q-1} f_i = f_0 \ldots f_{q-1}$.

By definition of ideal, for every $\alpha \in D$

$$\prod_{i=0}^{q-1} f_i(\alpha) \in \mu^n.$$