1. Prove that D is an integral domain of Krull dimension 0 if and only if D is a field.

Proof. (\Rightarrow) Let D be an integral domain of Krull dimension 0. Need to show D is a field. We know the only prime ideal of D is $\langle 0 \rangle$. Further, we know every maximal ideal is prime. Then, $\langle 0 \rangle$ is a maximal ideal of D. Then, $D/\langle 0 \rangle \cong D$ is a field.

(\Leftarrow) Let D be a field. Since D only has one prime ideal, $\langle 0 \rangle$, we know it is an integral domain of Krull dimension 0. □

2. A ring R satisfies the **descending chain condition (DCC)** on (prime) ideals if whenever $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$ is a decreasing chain of (prime) ideals of R, then there is a positive integer n such that $I_k = I_n$ for all $k \geq n$.

Prove that an integral domain that satisfies DCC on all ideals has dimension 0.

Note: A ring that satisfies DCC on all ideals is called Artinian.

Proof. First we note that in an integral domain zero is prime because if $ab = 0$ then either $a = 0$ or $b = 0$. Thus $\langle 0 \rangle$ is a prime ideal. Now we will show $\langle 0 \rangle$ is maximal, in fact in a ring satisfying DCC (an Artinian ring) every prime ideal is maximal, this is what we will show.

Consider $B = D/P$ where P is a prime ideal and thus B is an (Artinian) integral domain. Now let $x \in B$ be nonzero, then by DCC we know that for large enough n, $(x^{n+1}) = (x^n)$. This means we may write $x^{n+1}y = x^n$ for some nonzero $y \in B$. Because we are in an integral domain we may cancel x^n on both sides leaving $xy = 1$ which means x is a unit. Since this was any arbitrary nonzero $x \in B$, we conclude B is a field, and therefore P is maximal.

So since we are in an integral domain satisfying DCC we can conclude the zero ideal is both prime and maximal. Thus $\langle 0 \rangle$ is the only element in a chain of prime ideals, which implies by definition the Krull dimension of D is zero. □

3. Let I_1, I_2, \ldots, I_n be ideals in a ring R. Prove that the product $I_1I_2\cdots I_n$ is an ideal of R contained in each I_j, $j = 1, 2, \ldots, n$.

Proof. Let $a = \sum_{i=1}^{m} a_1a_{2i} \cdots a_{ni}$ and $b = \sum_{i=1}^{l} b_1b_{2i} \cdots b_{ni}$ be elements of $I_1I_2\cdots I_n$. Then $a - b = \sum_{i=1}^{m+l} c_1c_{2i} \cdots c_{ni}$, where the c_{ji}’s are the a_{ji}’s for $1 \leq i \leq m$ and the $-b_{ji}$’s for $m + 1 \leq i \leq m + n$. Since the I_j’s are ideals, $-b_{ji} \in I_j$ for all i, j, so $a - b \in I_1I_2\cdots I_n$. Now let $x \in R$. Then $xa = \sum_{i=1}^{m} a_1a_{2i} \cdots a_{ni} = \sum_{i=1}^{m} (xa_{1i})a_{2i} \cdots a_{ni}$.
but \(xa_i \in I_i \) for each \(i \) since \(I_i \) is an ideal. So by definition \(xa \in I_1 I_2 \cdots I_n \). So \(I_1 I_2 \cdots I_n \) is an ideal by the ideal test.

To show it is contained in each \(I_j \), note that for all \(i, j, a_1 a_2 \cdots a_m \in I_j \) since it is a product of some element of \(I_j \) and other elements of the ring. So, since each \(I_j \) is closed under addition, \(a \in I_j \) for each \(j \). Therefore \(I_1 I_2 \cdots I_n \subseteq I_j \) for each \(I_j \). \(\square \)

4. Let \(R \) be a ring. If \(I \) and \(J \) are relatively prime (i.e. \(I + J = R \)), prove that \(IJ = I \cap J \).

Proof. We first show \(IJ \subseteq I \cap J \). If \(a \in IJ \), we can write \(a = \sum_{k=1}^{n} i_k j_k \) for some elements \(i_k \in I \) and \(j_k \in J \). Since both \(I \) and \(J \) are ideals, we have that \(i_k j_k \) is an element of both \(I \) and \(J \). Furthermore, the sum \(\sum_{k=1}^{n} i_k j_k \) is also in both \(I \) and \(J \). Thus, \(a \in I \cap J \).

For the other containment, note that the hypothesis \(I + J = R \) implies that 1 can be written as \(1 = i + j \), where \(i \in I \) and \(j \in J \). Let \(a \in I \cap J \) be given. Then \(a = 1 \cdot a = (i + j)a = ia + ja \). Since \(a \in J \), we have \(ia \in IJ \). Similarly, \(ja \in IJ \), so \(a = ia + ja \in IJ \). \(\square \)

5. Let \(D \) be an integral domain with quotient field \(K \). If \(K \) is a fractional ideal of \(D \), prove that \(D = K \).

Proof. Let \(D \) be an integral domain with quotient field \(K \), where \(K \) is a fractional ideal of \(D \).

\[\subseteq \] We know that \(D \subseteq K \) by the definition of a quotient field.

\[\supseteq \] Since \(K \) is a fractional ideal of \(D \), we know there exists \(d \in D \) nonzero such that \(dK \subseteq D \). But notice that since \(K \) is the quotient field, we have \(dK = K \). Thus \(D \supseteq K \).

Therefore \(D = K \). \(\square \)