1. Prove that every PID is a Dedekind Domain.

2. Let R be a Dedekind Domain. Prove that R is a PID if and only if R is a UFD.

3. Let $I(R)$ denote the set of nonzero fractional ideals of a Dedekind domain R and let $P(R)$ denote the set of nonzero principal fractional ideals of R.
 (a) Prove that $I(R)$ is a multiplicative abelian group.
 (b) Prove that $P(R)$ is a subgroup of $I(R)$.
 (c) The ideal class group $C(R)$ is the quotient group $I(R)/P(R)$. Prove that $C(R)$ is trivial if and only if R is a PID.
 (d) Note that, in fact, the ideal class group of a Dedekind domain R gives a measure of how far away R is from being a UFD. Indeed, R is a UFD if and only if $C(R)$ is trivial and R is a HFD if and only if $|C(R)| \leq 2$. (You do NOT need to prove this result.)

4. Let F be any field and f be an irreducible polynomial in $F[x]$. Define $F[x]_f = \{ \frac{g}{h} \mid g, h \in F[x], h \neq 0, f \nmid h \}$. That is,
 $F[x]_f = \{ \text{all rational functions in } F(x) \text{ whose denominator is not divisible by } f \}$.
 Check that ν is discrete valuation on $F(x)$ and that the corresponding valuation ring is $F[x]_f$.

5. Let R be a DVR. Prove that R is a Euclidian Domain. (Hint: Start by proving that the discrete valuation, restricted to R; $\nu : R \rightarrow \mathbb{N}_0$ is a norm.)