Homework IV:

1. (a) (Subfield test) Let E be a field and let F be a subset of E with at least two elements. Prove that F is a subfield of E if, for any $a, b \in F$ ($b \neq 0$), $a - b$ and ab^{-1} belong to F.

(b) \star Let E be a field and $\{F_\alpha\}$ be a family of subfields of E. Prove that $\bigcap \alpha F_\alpha$ is a subfield of E.

2. \star Let F be a field and let $p(x) \in F[x]$. Prove the following: If $f(x), g(x) \in F[x]$ such that $\deg f(x) < \deg p(x)$, $\deg g(x) < \deg p(x)$, and $f(x) + (p(x)) = g(x) + (p(x))$ in $F[x]/(p(x))$, then $f(x) = g(x)$.

3. \star (Eisenstein’s Criterion for $\mathbb{Z}[x]$) Let

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x], \ n \geq 1.$$

If there is a prime p such that

(a) p doesn’t divide a_n,

(b) p divides a_i for $i \in \{0, 1, \ldots, n-1\}$, and

(c) p^2 doesn’t divide a_0,

then $f(x)$ is irreducible over \mathbb{Q}.

4. (a) Let F be a field and let $p(x) \in F[x]$. Prove that $(p(x))$ is a maximal ideal in $F[x]$ if and only if $p(x)$ is irreducible in $F[x]$.

(b) Let F be a field, I a nonzero ideal in $F[x]$, and $g(x)$ an element of $F[x]$. Prove that $I = (g(x))$ if and only if $g(x)$ is a nonzero polynomial of minimal degree in I.

5. Let R be an integral domain that contains a field F as a subring. If R is finite-dimensional when viewed as a vector space over R, prove that R is a field.

6. \star Let $F \subseteq L \subseteq E$ be fields. Prove that

$$[E : F] = [E : L][L : F].$$

If one side of the above equation is infinite, then the other side is also infinite.

7. \star Let E be an extension of a field F. Prove that $F(a, b) = [F(a)](b) = [F(b)](a)$.

8. (a) Prove that the polynomial $f(x) = x^4 + 2x^3 + 6x^2 + x + 9 \in \mathbb{Z}[x]$ is irreducible in $\mathbb{Q}[x]$. (Hint: Use Mod p Irreducibility Test (Homework II #8).)

(b) Let a be a root of $f(x)$ in some extension of \mathbb{Q}. Prove that $\sqrt{2} \not\in \mathbb{Q}(a)$.

9. ★ Let \(F \subset L \subset E \) be fields. Prove that if \(E/L \) is an algebraic extension, and \(L/F \) is an algebraic extension, then \(E/F \) is an algebraic extension.

10. Prove the following: The field \(E \) is an algebraic closure of itself if and only if \(E \) is algebraically closed.

11. Suppose that \(F \) is a field and every irreducible polynomial in \(F[x] \) is linear. Prove that \(F \) is algebraically closed.