1. ★ Let R be a commutative ring with unity. Prove the following statements.

 (a) An element $u \in R$ is a unit if and only if $(u) = R$.
 (b) Elements a and b are associates if and only if $(a) = (b)$.
 (c) If a and b are elements of R, then $a|b$ if and only if $(a) \supset (b)$ with strict containment if and only if a properly divides b.

2. ★ Let r be an element of a PID R. Prove that r is irreducible if and only if r is prime.

3. Prove that if R is a PID with nonzero element p, then $R/(p)$ is a field if and only if p is irreducible in R.

4. ★ Let F be a field, $a \in F$, and $f(x) \in F[x]$. Prove that a is a root of $f(x)$ if and only if $x - a$ is a factor of $f(x)$. (Hint: Use Euclidian Division Algorithm.)

5. Prove that the following rings are not unique factorization domains. In each case, give at least two distinct factorizations of some nonzero nonunit.

 (a) $\mathbb{Q}[x^2, x^3]$
 (b) $\mathbb{Z}[\sqrt{-n}]$ where n is a squarefree integer greater than 3.
 (Hint: First show that 2, $\sqrt{-n}$ and $1 + \sqrt{-n}$ are irreducible in R.)

6. ★ Prove that the ring $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$, where $i = \sqrt{-1}$, of Gaussian integers is a Euclidian domain and hence a UFD. Explain why the identities $5 = (2 + 1)(2 - i)$ and $2 \cdot 3 = 6 = (1 + i)(1 - i) \cdot 3$ do not violate unique factorization. (Hint: Consider the ‘usual’ complex norm $N(a + bi) = a^2 + b^2$ on $\mathbb{Z}[i]$ and the fact that it is multiplicative; i.e., $N(\alpha \beta) = N(\alpha)N(\beta)$. Given $\alpha, \beta \in \mathbb{Z}[i]$ with $\beta \neq 0$, write $\frac{\alpha}{\beta} = r + si$ in $\mathbb{Q}(i)$ (the quotient field of $\mathbb{Z}[i]$, cf. 9) and find integers p and q sufficiently close to r and s respectively so that you can apply the division algorithm in \mathbb{Z}.)

7. Generalize the statements and proofs of Lemma 17 through Theorem 22 to R a UFD and F its quotient field. Prove Theorem 24.

8. (Mod p Irreducibility Test) Let $f \in \mathbb{Z}[x]$ such that a prime p does not divide the leading coefficient of f. Prove that if \overline{f}, the polynomial f with coefficients reduced modulo p, is irreducible in $\mathbb{Z}_p[x]$, then f is irreducible in $\mathbb{Z}[x]$. (Hint: reduce to primitive polynomials.) Use this fact to prove that $x^4 - 6x^3 + 12x^2 - 3x + 9$ is irreducible in $\mathbb{Z}[x]$.
9. ★ In this sequence of exercises, you will develop the quotient field of an integral domain, analogous to the field of rational numbers which contains the ring of integers.

(a) Let R be an integral domain and define a fraction to be a symbol a/b with $a, b \in R$ and $b \neq 0$. Let S denote the set of all fractions of elements in R. We define a relation \approx on the set S of symbols as follows: $a/b \approx c/d$ if and only if $ad = bc$ in R. Prove that \approx is an equivalence relation on S.

(b) Define $F = S/\approx$ to be the set of equivalence classes of fractions. That is, we consider two fractions to be equal in F if they are equivalent in S. Define multiplication and addition of fractions in the obvious ways: $(a/b)(c/d) = (ac)/(bd)$, $a/b + c/d = (ad + bc)/(bd)$. Prove that these are well-defined operations on F; i.e., verify that these rules lead to equivalent answers if the fractions a/b and c/d are each replaced by equivalent fractions.

(c) Prove that F is a field (that contains R) by proving the following items.
 - Prove that F is an abelian group with respect to addition.
 - Prove that multiplication in F is commutative and associative and that it distributes across addition.
 - Prove that F has a multiplicative identity and that every nonzero element has a multiplicative inverse.

(d) Finally, prove that F is unique up to isomorphism. In other words, prove that if $\phi : R \to K$ is an injective ring homomorphism such that K is a field, then the function $\Phi(a/b) = \phi(a)/\phi(b)^{-1}$ defines a unique extension of ϕ to a ring homomorphism $\Phi : F \to K$.

10. ★ Let D be an integral domain with quotient field K. Let $f, g \in K[x]$, and $a \in D$. If $fD[x] \subseteq gD[x]$, then $f(a)D \subseteq g(a)D$.

Supplemental Reading and Exercises

- Read Chapter 3 (pages 36–38 and pages 41 (the last third)–43 of M. F. Atiyah and I. G. MacDonald Introduction to Commutative Algebra.
- Work exercises # 3 and # 9.