IMMERSE 2009 — Algebra

Homework I:

1. Let R be a commutative ring with unity. Then, for all $a, b, c \in R$ prove the following properties:
 (a) Left (right) cancellation law with respect to addition: if $a + b = a + c \ (b + a = c + a)$, then $b = c$;
 (b) $0a = 0$;
 (c) $(-a)b = a(-b) = -(ab)$;
 (d) $(-a)(-b) = ab$;
 (e) $-a = (-1)a$.

2. Decide which of the following sets under the given operations are commutative rings with unity/integral domains/fields:
 (a) $\mathbb{Q}[\sqrt{3}] = \{a + b\sqrt{3} \mid a, b \in \mathbb{Q}\}$, under the operations of addition and multiplication as in \mathbb{R};
 (b) $\mathbb{Z}[\sqrt{3}] = \{a + b\sqrt{3} \mid a, b \in \mathbb{Z}\}$, under the operations of addition and multiplication as in \mathbb{R};
 (c) $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$, under the operations of addition and multiplication as in \mathbb{C};
 (d) $n\mathbb{Z}, \ n > 1$, with usual addition and multiplication.

3. Prove the cancellation property for integral domains: If $ab = ac$ in an integral domain R, then $b = c$.

4. ★ Prove that any finite integral domain is a field.

5. ★ Let R be an integral domain and $p(x), q(x)$ be nonzero elements of $R[x]$. Then
 (a) $R[x]$ is an integral domain;
 (b) $\deg(p(x)q(x)) = \deg(p(x)) + \deg(q(x))$;
 (c) the units of $R[x]$ are just the units of R.

6. ★ Let $R = \{f \in \mathbb{Q}[x] : f(x) \in \mathbb{Z} \forall x \in \mathbb{Z}\}$. Prove that R is a subring of $\mathbb{Q}[x]$ that contains $\mathbb{Z}[x]$. Conclude that R is an integral domain.

7. Describe the quotient ring of the Gaussian integers $\mathbb{Z}[i]/(2 - i)$.

8. Let R be a ring and I be an ideal of R. Prove:
 (a) $I = R$ if and only if I contains a unit.
 (b) R has at least one maximal ideal.
 (c) The ideal (0) is maximal if and only if R is a field.

9. (a) Show that the ideal $(x^2 + 1)$ is maximal in $\mathbb{R}[x]$.
 (b) Show that the ideal $(x^2 + 1)$ is not prime in $\mathbb{Z}_2[x]$.

10. ★ Let R be a ring and I an ideal of R.
 (a) Prove that I is prime if and only if R/I is an integral domain.
 (b) Prove that I is maximal if and only if R/I is a field.
 (c) Every maximal ideal of R is a prime ideal.

11. (a) Prove that \mathbb{Z}_n is a ring for all $n \in \mathbb{Z}^+$. Furthermore, \mathbb{Z}_p is a field if and only if p is prime.
 (b) Prove that $\mathbb{Z}[t]/p\mathbb{Z}[t] \cong \mathbb{Z}_p[t]$.

Supplemental Reading and Exercises

- Read Chapter 1 (pages 1–5) of M. F. Atiyah and I. G. MacDonald Introduction to Commutative Algebra.
- Work exercises # 1 and # 2.