IV. Algebraic Extensions & Algebraic Closures

Definition 1. Let E be a field and let F be a subset of E. Then F is a subfield of E if F is also a field under the operations of E.

If E is a field containing the subfield F, then E is said to be an extension field (or just extension) of F, denoted E/F (read “E over F”).

Definition 2. Let F be a field and E be an extension of F.

1. An element $a \in E$ is said to be algebraic over F if a is a root of some nonzero polynomial $f(x) \in F[x]$.

2. If a is not algebraic over F (i.e., a is not the root of any nonzero polynomial with coefficients in F) then a is said to be transcendental over F.

3. The extension E/F is said to be algebraic if every element of E is algebraic over F.

Example 3.

1. Every element a of a field F is algebraic over F. Moreover, if E/F is an extension field and $a \in E$ is algebraic over F, then a is algebraic over any extension field K of F.

2. \mathbb{C}/\mathbb{R} is an algebraic extension.

3. There are real numbers that are transcendental over \mathbb{Q}.

4. The complex number $2\pi i$ is algebraic over \mathbb{R}, but transcendental over \mathbb{Q}.

Definition 4. Let E be an extension of the field F and let $a, b, \ldots \in E$ be a collection of elements of E. Then the smallest subfield of E containing both F and the elements a, b, \ldots, denoted $F(a, b, \ldots)$, is called the field generated by a, b, \ldots over F.

If the field E is generated by a single element a over F, $E = F(a)$, then E is said to be a simple extension of F and the element a is called a primitive element for the extension.

Theorem 5. Let E be an extension of the field F, $a \in E$ and let $F(a)$ be the field generated by a over F.

1. If a is transcendental over F, then $F(a) \cong F(x)$.

2. If a is a root of an irreducible polynomial $p(x) \in F[x]$, then $F(a) \cong F[x]/(p(x))$.

If $\deg(p(x)) = n$, then every element of $F(a)$ can be uniquely expressed in the form

$$c_{n-1}a^{n-1} + c_{n-2}a^{n-2} + \cdots + c_1a + c_0,$$

where $c_0, c_1, \ldots, c_{n-1} \in F$.
Example 6. Describe the elements of the field \(\mathbb{Q}(\sqrt{2}) \).

Note: If \(E/F \) is an extension of fields, then the multiplication defined on \(E \) makes \(E \) into a vector space over \(F \).

Definition 7. The degree of a field extension \(E/F \), denoted \([E:F] \), is the dimension of \(E \) as a vector space over \(F \) (i.e., \([E:F] = \dim_F E \)). The extension is said to be finite if \([E:F] \) is finite and otherwise is said to be infinite.

The last part of Theorem 5 (2) can be restated in the language of vector spaces:

Theorem 8. Let \(a \) be a root of an irreducible polynomial of degree \(n \) over a field \(F \). Then the set \(\{1, a, \ldots, a^{n-1}\} \) is a basis for \(F(a) \) as a vector space over \(F \), and \([F(a):F] = n \).

Example 9. Find the following degrees.

1. \([\mathbb{C}:\mathbb{R}] \)
2. \([\mathbb{R}:\mathbb{Q}] \)

Corollary 10. Let \(F \) be a field and let \(p(x) \in F[x] \) be irreducible over \(F \). If \(a, b \) are roots of \(p(x) \) in some extensions \(E \) and \(E' \) of \(F \), respectively, then \(F(a) \cong F(b) \).

Example 11.

1. \(\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}(-\sqrt{2}) \).
2. \(\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}\left(\sqrt{2}\left(\frac{-1+i\sqrt{3}}{2}\right)\right) \cong \mathbb{Q}\left(\sqrt{2}\left(\frac{-1-i\sqrt{3}}{2}\right)\right) \).
Theorem 12. Let E/F be an extension of a field F and let a be algebraic over F. Then there is a unique monic irreducible polynomial $m_{a,F}(x) \in F[x]$ which has a as a root. A polynomial $f(x) \in F[x]$ has a as a root if and only if $m_{a,F}(x)$ divides $f(x)$ in $F[x]$.

Corollary 13. If E/F is an extension of fields and a is algebraic over both F and E, then $m_{a,E}(x)$ divides $m_{a,F}(x)$ in $E[x]$.

Definition 14. The polynomial $m_{a,F}(x)$ in Theorem 12 is called the minimal polynomial for a over F. The degree of $m_{a,F}(x)$ is called the degree of a.

Note: By Theorem 12, a monic polynomial over F with a as a root is the minimal polynomial for a over F if and only if it is irreducible over F.

Theorem 15. Let a be algebraic over the field F and let $F(a)$ be the field generated by a over F. Then $F(a) \cong F[x]/(m_{a,F}(x))$.

In particular, $[F(a) : F] = \deg (m_{a,F}(x)) = \deg a$.

Example 16. Let $n \in \mathbb{Z}^+$. Find the following degrees

1. $[\mathbb{Q}(\sqrt[n]{2}) : \mathbb{Q}]$

2. $[\mathbb{R}(\sqrt[n]{2}) : \mathbb{R}]$

3. $[\mathbb{Q}(a) : \mathbb{Q}]$, where a is any root of $p(x) = x^4 + 10x + 5$

Theorem 17. If the extension E/F is finite, then E is algebraic over F.

Note: The converse of Theorem 17 is not true as the following example shows.

Example 18. $\mathbb{Q}(\sqrt{2}, \sqrt{2}, \sqrt{2}, \ldots)$ is an algebraic extension of \mathbb{Q} but not a finite extension of \mathbb{Q}.

Theorem 19. Let $F \subseteq L \subseteq E$ be fields. Then $[E : F] = [E : L][L : F]$.

If one side of the above equation is infinite, then the other side is also infinite.

Example 20.

1. Find the following degrees.

 (a) $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}(\sqrt{2})]$

 (b) $[\mathbb{Q}(\sqrt{2}, \sqrt{5}) : \mathbb{Q}]$

2. Note that $\sqrt{2} \notin \mathbb{Q}(a)$, where a is any root of $p(x) = x^4 + 10x + 5$.
Definition 21. A field F is algebraically closed if every nonconstant polynomial with coefficients in F has root in F (equivalently all roots are in F).

The extension field \overline{F} of F is called an algebraic closure of F if \overline{F} is algebraic over F and every nonconstant polynomial in $F[x]$ has a root in \overline{F}.

Note: By the definition, \overline{F} contains all the elements that are algebraic over F.

Lemma 22. Let $F \subset L \subset E$ be a tower of fields. If E/L is an algebraic extension and L/F is an algebraic extension, then E/F is an algebraic extension.

Proposition 23. Let \overline{F} be an algebraic closure of F. Then \overline{F} is algebraically closed.

Proposition 24. For any field F there exists a unique (up to isomorphism) algebraic closure of F.

Example 25.

1. (Fundamental Theorem of Algebra) The field \mathbb{C} is algebraically closed.

2. The field \mathbb{C} contains an algebraic closure for any of its subfields. In particular, $\overline{\mathbb{Q}}$, the collection of complex numbers algebraic over \mathbb{Q}, is the algebraic closure of \mathbb{Q} and is contained properly in \mathbb{C}.

3. If E is a finite extension of \mathbb{R}, then either $E = \mathbb{R}$ or $E = \mathbb{C}$.
Homework IV:

1. (a) (Subfield test) Let E be a field and let F be a subset of E with at least two elements. Prove that F is a subfield of E if, for any $a, b \in F$ ($b \neq 0$), $a - b$ and ab^{-1} belong to F.

(b) \star Let E be a field and $\{F_\alpha\}$ be a family of subfields of E. Prove that $\bigcap F_\alpha$ is a subfield of E.

2. \star Let F be a field and let $p(x) \in F[x]$. Prove the following: If $f(x), g(x) \in F[x]$ such that $\deg(f(x)) < \deg(p(x)), \deg(g(x)) < \deg(p(x))$, and $f(x)+(p(x)) = g(x)+(p(x))$ in $F[x]/(p(x))$, then $f(x) = g(x)$.

3. \star (Eisenstein’s Criterion for $\mathbb{Z}[x]$) Let

$$f(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x], \ n \geq 1.$$

If there is a prime p such that

(a) p doesn’t divide a_n,

(b) p divides a_i for $i \in \{0, 1, \ldots, n - 1\}$, and

(c) p^2 doesn’t divide a_0,

then $f(x)$ is irreducible over \mathbb{Q}.

4. (a) Let F be a field and let $p(x) \in F[x]$. Prove that $(p(x))$ is a maximal ideal in $F[x]$ if and only if $p(x)$ is irreducible in $F[x]$.

(b) Let F be a field, I a nonzero ideal in $F[x]$, and $g(x)$ an element of $F[x]$. Prove that $I = (g(x))$ if and only if $g(x)$ is a nonzero polynomial of minimal degree in I.

5. Let D be an integral domain that contains a field F as a subring. If D is finite-dimensional when viewed as a vector space over F, prove that D is a field.

6. \star Let $F \subseteq L \subseteq E$ be fields. Prove that

$$[E : F] = [E : L][L : F].$$

If one side of the above equation is infinite, then the other side is also infinite.

7. \star Let E be an extension of a field F. Prove that $F(a, b) = [F(a)](b) = [F(b)](a)$.

8. (a) Prove that the polynomial $f(x) = x^4 + 2x^3 + 6x^2 + x + 9 \in \mathbb{Z}[x]$ is irreducible in $\mathbb{Q}[x]$. (Hint: Use Mod p Irreducibility Test (Homework II #8).)

(b) Let a be a root of $f(x)$ in some extension of \mathbb{Q}. Prove that $\sqrt{2} \notin \mathbb{Q}(a)$.

9. \star Let $F \subset L \subset E$ be fields. Prove that if E/L is an algebraic extension, and L/F is an algebraic extension, then E/F is an algebraic extension.
10. Prove the following: The field E is an algebraic closure of itself if and only if E is algebraically closed.

11. Suppose that F is a field and every irreducible polynomial in $F[x]$ is linear. Prove that F is algebraically closed.