II. PIDs, UFDs & Euclidean Domains

Definition 1. An ideal I of a ring R is a principal ideal provided $I = (x) = xR = Rx$ for some element $x \in R$. An integral domain R is a principal ideal domain, or PID, if every ideal of R is principal.

Example 2.
1. The ring of integer \mathbb{Z} is a PID.
2. The ring $\mathbb{Z}[x]$ is not a PID.

Definition 3. Let R be an integral domain. An element a divides an element b, written $a \mid b$, provided there exists $q \in R$ such that $b = aq$. The element a is a proper divisor of b if neither a nor q is a unit. A nonzero nonunit element $x \in R$ is irreducible if x has no proper divisors. Two elements a and b of R are associates if $a = ub$ for some unit u of R. A nonzero nonunit p is prime in R provided the ideal (p) is a prime ideal in R.

Example 4.
1. The prime elements and the irreducible elements of \mathbb{Z} are precisely the prime numbers and their additive inverses. The units of \mathbb{Z} are ± 1 and thus a and b are associates if and only if $a = \pm b$.
2. The prime elements and the irreducible elements of $\mathbb{Q}[x]$ are the polynomials which cannot be written as the product of two nonconstant polynomials. Two polynomials f and g in $\mathbb{Q}[x]$ are associate if and only if $f = rg$ for some $0 \neq r \in \mathbb{Q}$.

Proposition 5. Let R be an integral domain. Then every prime element is irreducible.

Proposition 6. Let R be an integral domain. The following statements are equivalent.

1. For each nonzero nonunit $x \in R$, the process of factoring x into a product of irreducible elements terminates after finitely many steps.

2. The ring R does not contain an infinite chain of principal ideals

$$(a_1) \subset (a_2) \subset (a_3) \subset \cdots .$$

Definition 7. Existence of factorization holds in R when property 1 of Proposition 6 is satisfied. An integral domain R satisfies the ascending chain condition on principal ideals or ACCP if property 2 of Proposition 6 is satisfied.
Example 8.
1. The ring \(\mathbb{Z} \) satisfies ACCP.
2. The ring \(\mathbb{C}[x_1, x_2, x_3, x_4, \ldots] \), where \(x_2^2 = x_1, x_3^2 = x_2 \), etc. does not satisfy ACCP.

Definition 9. An integral domain \(R \) is a unique factorization domain or UFD provided each nonzero nonunit element in \(R \) can be factored as a product of finitely many irreducible elements and whenever \(a_1a_2a_3 \cdots a_s = b_1b_2 \cdots b_t \) with each \(a_i \) and \(b_j \) irreducible,

1. \(s = t \) and
2. after a suitable reordering, \(a_i = u_ib_i \), where each \(u_i \) is a unit.

Example 10.
1. The rings \(\mathbb{Z}, \mathbb{C}[x] \) and \(\mathbb{Z}[i] \) are UFDs.
2. The rings \(\mathbb{Z}[\sqrt{-5}] \) and \(\mathbb{Z}[2i] \) are not UFDs.

Proposition 11. Let \(R \) be an integral domain which satisfies ACCP. Then \(R \) is a UFD if and only if the set of irreducible elements coincides with the set of prime elements.

Definition 12. An integral domain \(R \) is a Euclidean domain if there exists a function \(N : R - \{0\} \to \mathbb{N} \), called a norm on \(R \) such that whenever \(a, b \in R \) with \(b \neq 0 \), there exist elements \(q \) and \(r \) in \(R \) such that \(a = bq + r \) with either \(r = 0 \) or \(N(r) < N(b) \).

Example 13.
1. The ring \(\mathbb{Z} \) is a Euclidean domain.
2. If \(F \) is a field, the ring \(F[x] \) is a Euclidean domain.

Theorem 14. Let \(R \) be an integral domain.
1. If \(R \) is a PID, then \(R \) is a UFD.
2. If \(R \) is a Euclidean domain, then \(R \) is a PID.

Example 15.
1. The ring \(\mathbb{Z} \) is a UFD.
2. If \(F \) is a field, the ring \(F[x] \) is a UFD.
Definition 16. A polynomial \(f(x) \in \mathbb{Z}[x] \) is \textbf{primitive} if the coefficients of \(f \) have no nonunit common factors.

Lemma 17. If \(0 \neq f \in \mathbb{Q}[x] \), then there is a unique positive \(c \in \mathbb{Q} \) and a unique primitive \(f_0(x) \in \mathbb{Z}[x] \) such that \(f(x) = cf_0(x) \).

Definition 18. The rational number \(c \) in Lemma 17 is called the \textbf{content} of \(f \).

Theorem 19. (Gauss’s Lemma) The product of a finite number of primitive polynomials in \(\mathbb{Z}[x] \) is again primitive.

Proposition 20.

1. Any nonconstant polynomial \(f \in \mathbb{Z}[x] \) that is irreducible in \(\mathbb{Z}[x] \) is also irreducible in \(\mathbb{Q}[x] \).

2. Let \(f \) be a polynomial in \(\mathbb{Z}[x] \) with positive leading coefficient. Then \(f \) is irreducible in \(\mathbb{Z}[x] \) if and only if either

 (a) \(f \) is a prime integer, or

 (b) \(f \) is primitive and irreducible in \(\mathbb{Q}[x] \).

Proposition 21. Every irreducible element of \(\mathbb{Z}[x] \) is prime.

Theorem 22. The ring \(\mathbb{Z}[x] \) is a \textbf{UFD}.

Example 23. The ring \(\mathbb{Z}[x] \) is a \textbf{UFD}, but is not a \textbf{PID}.

Theorem 24. Let \(D \) be a \textbf{UFD}. Then \(D[x] \) is \textbf{UFD}.
Homework II:

1. ✷ Let R be a commutative ring with unity. Prove the following statements.

 (a) An element $u \in R$ is a unit if and only if $(u) = R$.

 (b) Further assume that R is an integral domain. Prove that elements a and b are associates if and only if $(a) = (b)$.

 (c) If a and b are elements of R, then $a | b$ if and only if $(a) \supseteq (b)$ with strict containment if and only if a properly divides b.

2. ✷ Let r be an element of a PID R. Prove that r is irreducible if and only if r is prime.

3. Prove that if R is a PID with nonzero element p, then $R/(p)$ is a field if and only if p is irreducible in R.

4. ✷ Let F be a field, $a \in F$, and $f(x) \in F[x]$. Prove that a is a root of $f(x)$ if and only if $x - a$ is a factor of $f(x)$. (Hint: Use Euclidian Division Algorithm.)

5. Prove that the following rings are not unique factorization domains. In each case, give at least two distinct factorizations of some nonzero nonunit.

 (a) $\mathbb{Q}[x^2, x^3]$

 (b) $\mathbb{Z}[\sqrt{-n}]$ where n is a squarefree integer greater than 3.
 (Hint: First show that 2, $\sqrt{-n}$ and $1 + \sqrt{-n}$ are irreducible in R.)

6. ✷ Prove that the ring $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$, where $i = \sqrt{-1}$, of Gaussian integers is a Euclidian domain and hence a UFD. Explain why the identities $5 = (2 + i)(2 - i)$ and $2 \cdot 3 = 6 = (1 + i)(1 - i) \cdot 3$ do not violate unique factorization. (Hint: Consider the ‘usual’ complex norm $N(a + bi) = a^2 + b^2$ on $\mathbb{Z}[i]$ and the fact that it is multiplicative; i.e., $N(\alpha \beta) = N(\alpha)N(\beta)$. Given $\alpha, \beta \in \mathbb{Z}[i]$ with $\beta \neq 0$, write $\frac{\alpha}{\beta} = r + si$ in $\mathbb{Q}(i)$ (the quotient field of $\mathbb{Z}[i]$, cf. 9) and find integers p and q sufficiently close to r and s respectively so that you can apply the division algorithm in \mathbb{Z}.)

7. Generalize the statements and proofs of Lemma 17 through Theorem 22 to D a UFD and F its quotient field. Prove Theorem 24.

8. (Mod p Irreducibility Test) Let $f \in \mathbb{Z}[x]$ such that a prime p does not divide the leading coefficient of f. Prove that if \overline{f}, the polynomial f with coefficients reduced modulo p, is irreducible in $\mathbb{Z}_p[x]$, then f is irreducible in $\mathbb{Q}[x]$. (Hint: reduce to primitive polynomials.) Use this fact to prove that $x^4 - 6x^3 + 12x^2 - 3x + 9$ is irreducible in $\mathbb{Q}[x]$.

9. ★ In this sequence of exercises, you will develop the quotient field of an integral domain, analogous to the field of rational numbers which contains the ring of integers.

(a) Let R be an integral domain and define a fraction to be a symbol a/b with $a, b \in R$ and $b \neq 0$. Let S denote the set of all fractions of elements in R. We define a relation \approx on the set S of symbols as follows: $a/b \approx c/d$ if and only if $ad = bc$ in R. Prove that \approx is an equivalence relation on S.

(b) Define $F = S/\approx$ to be the set of equivalence classes of fractions. That is, we consider two fractions to be equal in F if they are equivalent in S. Define multiplication and addition of fractions in the obvious ways: $(a/b)(c/d) = (ac)/(bd)$, $a/b + c/d = (ad + bc)/(bd)$. Prove that these are well-defined operations on F; i.e., verify that these rules lead to equivalent answers if the fractions a/b and c/d are each replaced by equivalent fractions.

(c) Prove that F is a field (that contains R) by proving the following items.

- Prove that F is an abelian group with respect to addition.
- Prove that multiplication in F is commutative and associative and that it distributes across addition.
- Prove that F has a multiplicative identity and that every nonzero element has a multiplicative inverse.

(d) Finally, prove that F is unique up to isomorphism. In other words, prove that any field containing an isomorphic copy of R must also contain an isomorphic copy of F.

10. ★ Let D be an integral domain with quotient field K. Let $f, g \in K[x]$, and $a \in D$. If $fD[x] \subseteq gD[x]$, then $f(a)D \subseteq g(a)D$.

Supplemental Reading and Exercises

- Read Chapter 3 (pages 36–38 and pages 41 (the last third)–43 of M. F. Atiyah and I. G. MacDonald Introduction to Commutative Algebra.

- Work exercises # 3 and # 9.