III. Noetherian Rings, Atomicity & Elasticity

Definition 1. A ring R is Noetherian provided every ideal is finitely generated.

Example 2. All PID’s are Noetherian rings.

Theorem 3. Let R be a ring. The following statements are equivalent.

1. Every ideal in R is finitely generated.

2. Every ascending chain of ideals $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ stabilizes; i.e., there exists some n for which $I_k = I_{k+1}$ for all $k \geq n$.

3. Every nonempty set of ideals in R has a maximal element with respect to inclusion.

Lemma 4. Let R be a ring and let I be an ideal of the polynomial ring $R[x]$. The set J consisting of all leading coefficients of polynomials contained in I forms an ideal of R.

Theorem 5. (Hilbert Basis Theorem) If R is a Noetherian ring, then so is the polynomial ring $R[x]$.

Example 6.

1. If R is a Noetherian ring, $R[x_1,x_2,\ldots,x_n]$ is also Noetherian.

2. The ring $\mathbb{Z}[x_1,x_2,\ldots]$ is not Noetherian.

Proposition 7. If R is a Noetherian ring and I is a proper ideal of R, then R/I is a Noetherian ring.

Example 8. Any nontrivial quotient of a polynomial ring in finitely many variables with coefficients in a Noetherian ring is Noetherian. For example, the following rings are Noetherian.

1. $\mathbb{Q}[x,y]/(x^2 + y^2 - 1)$

2. $\mathbb{Z}[x,y,z]/(2x,3y,5z)$
Definition 9. An integral domain D is an **atomic domain** provided each nonzero nonunit element of D can be expressed as a finite product of irreducible elements or atoms.

Example 10.

1. All integral domains that satisfy ACCP are atomic domains.
2. The ring $\mathbb{C}[\{x^r \mid r \in \mathbb{Q}^+\}]$ is not atomic.
3. The ring $\mathbb{C}[x^{1/3}, x^{1/2^5}, x^{1/2^27}, \ldots, x^{1/2^k} p_{k+1}, \ldots]$, where p_k denotes the kth odd prime, illustrates that a ring can be atomic but not satisfy ACCP.

Definition 11. Let D be an atomic domain and let $x \in D$ be a nonzero nonunit. If x can be factored as $x = a_1a_2\cdots a_n$ with each a_i irreducible, then n is called the **length** of this factorization of x.

The symbol $l_D(x)$ denotes the length of the shortest factorization of x, and the symbol $L_D(x)$ denotes the upper bound of the lengths of all factorizations of x.

The **elasticity of an element** $x \in D$, denoted $\rho(x)$ is the (possibly infinite) ratio $\rho(x) = L_D(x)/l_D(x)$.

The **elasticity of the domain** D is then

$$\rho(D) = \sup \left\{ \frac{m}{n} \mid x_1 \cdots x_m = y_1 \cdots y_n \text{ for } x_i \text{ and } y_j \text{ irreducible elements of } D \right\}.$$

Example 12.

1. $1 \leq \rho(D) \leq \infty$ for every atomic domain D.
2. If D is a UFD, then $\rho(D) = 1$. The converse is not true.
3. $\rho(\mathbb{Z}) = 1$
4. Let m and n be positive integers with $m < n$ and $m \nmid n$. Then $\rho(\mathbb{Q}[x^m, x^n]) \geq n/m$.

Definition 13. An atomic domain D is a **bounded factorization domain** or **BFD** if, for each nonzero nonunit $x \in D$, $L_D(x) < \infty$.

Example 14.

1. Every UFD is a BFD.
2. All Noetherian rings are BFDs.
3. If R is a BFD then R satisfies ACCP.
4. The ring $\mathbb{Q}[x^{1/2}, x^{1/3}, x^{1/5}, x^{1/7}, \ldots]$ is not a BFD but does satisfy ACCP.
Homework III:

1. (Special case of Proposition 6.1 and Proposition 6.2 (Chapter 6) of M. F. Atiyah and I. G. MacDonald “Introduction to Commutative Algebra”)

Let R be a ring. Prove that the following statements are equivalent:

(a) Every ideal in R is finitely generated.

(b) Every ascending chain of ideals $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ stabilizes; i.e., there exists some n for which $I_k = I_{k+1}$ for all $k \geq n$.

(c) Every nonempty set of ideals in R has a maximal element with respect to inclusion.

2. Let R be a Noetherian ring and let I be an ideal of R. Prove that R/I is a Noetherian ring.

3. ∗ Prove that if D is a BFD, then D satisfies the ascending chain condition on principal ideals.

4. Prove that an atomic domain D is a BFD if and only if $\rho(x) < \infty$ for every nonzero nonunit $x \in D$.

5. ∗ Let D be an integral domain with quotient field K. The ring of integral-valued polynomials over D is $\text{Int}(D) = \{ f \in K[x] \mid f(x) \in D \forall x \in D \}$.

(a) Prove that if $D = K$, then $\text{Int}(D) = K[x]$.

(b) Prove that $\text{Int}(D)$ is an integral domain.

(c) Prove for any positive integer n, \(x^n \) is an element of $\text{Int}(\mathbb{Z})$.

6. ∗ Let $\mathcal{P} = \{ p_k \}$ be an enumeration of the prime integers.

(a) Prove that \mathcal{P} is an infinite set.

(b) Prove that the sum $\sum_{p \in \mathcal{P}} \frac{1}{p}$ is divergent.

7. ∗ Before Thursday’s presentations, carefully read Section 0 of the paper “Elasticity for integral-valued polynomials” by Paul-Jean Cahen and Jean-Luc Chabert.

Supplemental Reading and Exercises

- Read Propositions 6.1 and 6.2 (pages 74–75) and Chapter 7 (pages 80–82) of M. F. Atiyah and I. G. MacDonald “Introduction to Commutative Algebra.”

- Work exercises # 1 and # 4 from Chapter 7.