VIII. Dedekind Domains & Discrete Valuation Domains

Definition 1. A ring \(R \) is a Dedekind domain if \(R \) is an integrally closed Noetherian ring with Krull dimension one.

Example 2.
1. All PIDs are Dedekind domains.
2. \(\mathbb{Z}[\sqrt{-5}] \) is a Dedekind domain.
3. The ring of integers in an algebraic number field is a Dedekind Domain.

Lemma 3. Let \(I \) be a nonzero prime ideal of a Dedekind domain \(R \) with quotient field \(K \) and let \(J = \{ x \in K \mid xI \subseteq R \} \). Then:
 1. \(R \subseteq J \).
 2. \(J \) is a fractional ideal of \(R \) and \(IJ = R \).

Theorem 4. Let \(I \) be a nonzero ideal of a Dedekind domain \(R \). Then \(I \) can be factored uniquely as a product of prime ideals \(I = P_1^{n_1}P_2^{n_2} \cdots P_r^{n_r} \) for some distinct nonzero prime ideals \(P_i \) and \(n_i \in \mathbb{Z}^+ \).

Corollary 5. Let \(I \) be a nonzero fractional ideal of a Dedekind domain \(R \). Then \(I \) can be factored uniquely as a product of prime ideals \(I = P_1^{n_1}P_2^{n_2} \cdots P_r^{n_r} \) for some distinct nonzero prime ideals \(P_i \) and \(n_i \in \mathbb{Z} \).

Note: If a nonzero fractional ideal is factored (uniquely) as a product \(I = P_1^{n_1}P_2^{n_2} \cdots P_r^{n_r} \) of nonzero prime ideals of \(R \), then \(I \) is an (integral) ideal of \(R \) if and only if \(n_i \geq 0 \) for each \(i \in \{1, 2, \ldots, r\} \).

Definition 6. Let \(I_1 \) and \(I_2 \) denote nonzero ideals of a ring \(R \). We say that \(I_1 \) divides \(I_2 \) provided \(I_2 = JI_1 \) for some ideal \(J \) in \(R \).

Corollary 7. Let \(R \) be a Dedekind domain with ideals \(I_1 \) and \(I_2 \). Then \(I_1 \) divides \(I_2 \) if and only if \(I_1 \supseteq I_2 \).

Proposition 8. Let \(I \) be a nonzero fractional ideal of a Dedekind domain \(R \). Then there exists a nonzero (integral) ideal \(J \) of \(R \) such that \(IJ \) is a principal ideal of \(R \).

Lemma 9. Let \(P_1, P_2, \ldots, P_n \) denote distinct nonzero prime ideals in a Dedekind domain \(R \). Let \(J = P_1P_2 \cdots P_n \) and set \(Q_i = P_1 \cdots P_{i-1}P_{i+1} \cdots P_n \) for each \(i \), \(1 \leq i \leq n \). (If \(n = 1 \), take \(Q_1 = R \).) Let \(L \) be a nonzero ideal of \(R \). For each \(i \), choose \(a_i \in IQ_i \) with \(a_i \notin IJ \) and set \(a = a_1 + a_2 + \cdots + a_n \). Then \(a \in L \), but \(a \notin IP_i \) for any \(i \).
Proposition 10. Let I be a nonzero ideal of a Dedekind domain R. There is a nonzero ideal I' such that II' is a principal ideal. If J is a nonzero ideal of R, I' can be chosen such that I' is relatively prime to J.

Corollary 11. Let I be a nonzero ideal of a Dedekind domain R and let $0 \neq a \in I$. Then $I = (a, b)$ for some $b \in I$.

Example 12. The ring $\mathbb{Z}[\sqrt{-5}]$ is a Dedekind domain that is not a PID.

Definition 13. Let G be a (totally ordered) group isomorphic to \mathbb{Z}. A discrete valuation on a field K is a function $\nu : K^* \to G$ (where $K^* = K - \{0\}$) satisfying

1. ν is surjective;
2. $\nu(xy) = \nu(x) + \nu(y)$, for all $x, y \in K^*$, (i.e. ν is a homomorphism);
3. $\nu(x + y) \geq \min\{\nu(x), \nu(y)\}$, for all $x, y \in K^*$ with $x + y \neq 0$.

The valuation ν is often extended to all of K by defining $\nu(0) = \infty$ (then (2) and (3) hold for all $x, y \in K$).

The set $R = \{x \in K^*|\nu(x) \geq 0\} \cup \{0\}$ is a subring of K called the valuation ring of ν. The image $\nu(K)$ is called the value group of ν.

An integral domain R is called a Discrete Valuation Ring (DVR) if R is the valuation ring of a discrete valuation ν on the field of fractions of R.

Example 14. Let p be a fixed prime number, and $K = \mathbb{Q}$. Define

$$\nu_p : \mathbb{Q}^* \to \mathbb{Z} \text{ by } \nu_p\left(\frac{a}{b}\right) = \nu_p\left(p^n\frac{a_1}{b_1}\right) = n$$

where $\frac{a}{b} = p^n\frac{a_1}{b_1}$, $p \nmid a_1$, and $p \nmid b_1$. Then ν_p is a discrete valuation on \mathbb{Q}, and

$$\mathbb{Z}_{(p)} = \left\{ \frac{x}{y} \mid x, y \in \mathbb{Z}, y \neq 0, \gcd(y, p) = 1 \right\}$$

is a DVR with respect to ν_p.

Proposition 15. Let R be a DVR and let $\nu : K \to \mathbb{Z}$ be the associated discrete valuation.

1. The set $M = \{x \in R \mid \nu(x) > 0\}$ is a principal ideal of R.
2. R is a Noetherian local ring of dimension one with unique maximal ideal M.
3. R is integrally closed.
4. Every nonzero ideal of R is a power of M.
Definition 16. Let ν be a discrete valuation on a field K. An extension ν' of ν to an extension field L of K is a discrete valuation of ν' of L whose restriction on K is ν.

Note: Given a discrete valuation ν on a field K and a simple extension $K(a)$ of K, there exists an extension ν' of ν which is a discrete valuation on K'.

Example 17. Let $\nu : \mathbb{Q}^* \to \mathbb{Z}$ denote the 2-adic valuation on the rationals defined as in Example 14 and consider the quadratic field extension $\mathbb{Q}(i)$ of \mathbb{Q}, where $i = \sqrt{-1}$. Recall that $\mathbb{Z}[i]$ is a UFD and note that $1 + i$ is irreducible in $\mathbb{Z}[i]$. Thus, we can express each element of $\mathbb{Q}(i)$ uniquely as $(1 + i)^n \frac{\alpha}{\beta}$ where α and $\beta \neq 0$ are elements of $\mathbb{Z}[i]$ not having $1 + i$ as a factor. Define

$$\nu' : \mathbb{Q}(i) \to (1/2)\mathbb{Z} = \left\{ \frac{a}{2} \bigg| a \in \mathbb{Z} \right\} \approx \mathbb{Z} \text{ by } \nu' : (1 + i)^n \frac{\alpha}{\beta} \mapsto \frac{n}{2}. $$

Then ν' is a nontrivial extension of ν.

Definition 18. Let L be a finite extension field of a field K. Let ν be a discrete valuation on K with value group G and valuation ring R. Let ν' denote an extension of ν to L be a discrete valuation with value group H and valuation ring S. The ramification index of ν' over ν is the index $[H : G]$. If M is the maximal ideal of R and N is the maximal ideal of S, then the residue class degree of ν' over ν is the index $[S/N : R/M]$.

Proposition 19. Let L be a finite extension field of a field K. Let ν be a discrete valuation on K with value group G and valuation ring R. Let ν' denote an extension of ν to L be a discrete valuation with value group H and valuation ring S. Suppose that M is the maximal ideal of R and N is the maximal ideal of S. Then $[H : G] \cdot [S/N : R/M] \leq [L : K]$.
Homework VIII:

1. Prove that every PID is a Dedekind Domain.

2. ★ Let R be a Dedekind Domain. Prove that R is a PID if and only if R is a UFD.

3. Let $I(R)$ denote the set of nonzero fractional ideals of a Dedekind domain R and let $P(R)$ denote the set of nonzero principal fractional ideals of R.

 (a) Prove that $I(R)$ is a multiplicative abelian group.

 (b) Prove that $P(R)$ is a subgroup of $I(R)$.

 (c) The ideal class group $C(R)$ is the quotient group $I(R)/P(R)$. Prove that $C(R)$ is trivial if and only if R is a PID.

 (d) Note that, in fact, the ideal class group of a Dedekind domain R gives a measure of how far away R is from being a UFD. Indeed, R is a UFD if and only if $C(R)$ is trivial and R is a HFD if and only if $|C(R)| \leq 2$. (You do NOT need to prove this result.)

4. Let F be any field and f be an irreducible polynomial in $F[x]$. Define $F[x]_f = \left\{ \frac{g}{h} \mid g, h \in F[x], h \neq 0, f \nmid h \right\}$. That is,

 $$F[x]_f = \{\text{all rational functions in } F(x) \text{ whose denominator is not divisible by } f\}.$$

 Check that ν is discrete valuation on $F(x)$ and that the corresponding valuation ring is $F[x]_f$.

5. Let R be a DVR. Prove that R is a Euclidian Domain. (Hint: Start by proving that the discrete valuation, restricted to $R; \nu: R \to \mathbb{N}_0$ is a norm.)