VII. Krull Dimension & Fractional Ideals

Definition 1. A ring \(R \) has **Krull dimension** \(n \) (or just the **dimension** \(n \)) if \(n \) is the maximum positive integer such that \(P_0 \subset P_1 \subset P_2 \subset \cdots \subset P_n \) is a chain of \(n+1 \) distinct prime ideals in \(R \). The dimension of \(R \) is infinite if \(R \) has arbitrary long chains of distinct prime ideals.

Example 2.
1. Every field has dimension 0.
2. Every PID that is not a field has dimension 1.
3. If \(F \) is a field, then \(F[x_1, x_2, \ldots, x_n] \) has dimension at least \(n \).
4. If \(F \) is a field, then \(F[x_1, x_2, \ldots, x_n, \ldots] \) has infinite dimension.

Lemma 3. Let \(I_1, I_2, \ldots, I_n \) be ideals in a ring \(R \).

1. The product

\[
I_1I_2 \cdots I_n = \left\{ \text{all finite sums } \sum_i a_{1i}a_{2i}\cdots a_{ni} \text{ where } a_{ki} \in I_k, \text{ for } k = 1, 2, \ldots, n \right\}
\]

is an ideal of \(R \) contained in each \(I_j, j = 1, 2, \ldots, n \).

2. If \(P \) is a prime ideal of \(R \) with \(I_1I_2 \cdots I_n \subseteq P \), then \(I_j \subseteq P \) for some \(j \).

Theorem 4. Let \(I \) be a nonzero ideal of a Noetherian integral domain \(D \). Then \(I \) contains a product of nonzero prime ideals.

Corollary 5. Let \(I \) be an ideal of a Noetherian ring \(R \). Then \(I \) contains a product of prime ideals.

Definition 6. Let \(D \) be an integral domain with quotient field \(K \). A \(D \)-submodule \(I \) of \(K \) is a **fractional ideal** of \(D \) if \(dI \subseteq D \) for some nonzero \(d \in D \). \(d \) is called a **denominator** of \(I \).

Example 7.
1. Any ideal of \(D \) is a fractional ideal. Conversely, every fractional ideal of \(D \) that is contained in \(D \) is an ideal of \(D \).
2. The set \((1/2)\mathbb{Z}\) of rational numbers with denominators 1 or 2 is a fractional ideal of \(\mathbb{Z} \).
3. Let \(F \) be a field. The set \(F[x] \subset F(x) \) is a fractional ideal of \(F[x^2, x^3] \).
Lemma 8. Let D be an integral domain with quotient field K.

1. If I is a finitely generated D-submodule of K, then I is a fractional ideal of D.

2. If D is Noetherian then I is a fractional ideal of D if and only if I is a finitely generated D-module of K.

3. If I and J are fractional ideals of D with denominators d and r respectively, then $I \cap J$, $I + J$ and IJ are fractional ideals with denominators d (or r), dr and dr, respectively.
Homework VII:

1. Prove that D is an integral domain of Krull dimension 0 if and only if D is a field.

2. A ring R satisfies the **descending chain condition (DCC) on (prime) ideals** if whenever $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$ is a decreasing chain of (prime) ideals of R, then there is a positive integer n such that $I_k = I_n$ for all $k \geq n$.

 Prove that an integral domain that satisfies DCC on all ideals has dimension 0.

 Note: A ring that satisfies DCC on all ideals is called Artinian.

3. Let I_1, I_2, \ldots, I_n be ideals in a ring R. Prove that the product $I_1I_2\cdots I_n$ is an ideal of R contained in each I_j, $j = 1, 2, \ldots, n$.

4. Let R be a ring. If I and J are relatively prime (i.e. $I + J = R$), prove that $IJ = I \cap J$.

5. Let D be an integral domain with quotient field K. If K is a fractional ideal of D, prove that $D = K$.