If the residue field \(k \) is not algebraically closed, the normal forms for the \((A_1)\)-singularities in Theorem 1.1 and in (3) of Theorem 3.1 must be replaced by the following:

\[(†) \quad k[[x_0, \ldots, x_d]]/(g + v_1 x_2^2 + v_1 v_2 x_3^2 + \ldots + v_1 v_2 v_3 \ldots \cdot v_{d-1} x_d^2),\]

where each \(v_i \) is a unit of \(k[[x_0, \ldots, x_i]] \) and \(g \in k[[x_0, x_1]] \). By adjusting \(g \) and multiplying the defining equation by \(v_1^{-1} \), we could eliminate the unit \(v_1 \). Therefore the forms given in Theorems 1.1 and 3.1 are valid for one-dimensional rings.