Sample Problems for the Final Exam

1. Suppose that $a = 6^5 \cdot 7^{11} \cdot 17^2$ and $b = 2^7 \cdot 5^8 \cdot 15^3 \cdot 17^5$. Find (written as a product of prime powers):
 (a) the greatest common divisor (GCD) of a and b:
 (b) the least common multiple (LCM) of a and b:

2. Find $[6]^{-1}$ in $U(\mathbb{Z}_{13}) = \{[a] \mid \text{GCD}(a, 13) = 1 \text{ and } 0 < a < 13\}$, the group of units of \mathbb{Z}_{13}.

3. Define the greatest common divisor of two non-zero polynomials $f, g \in \mathbb{Q}[x]$.

4. Find the least non-negative integer solution to each of the following congruences. In (a) and (b) find the general solution too. If there is no solution, explain why. (Do not use calculators on this problem.)
 (a) $3x \equiv 5 \pmod{10}$.
 (b) $6x \equiv 10 \pmod{12}$.
 (c) $x \equiv 5^{6001} \pmod{7}$.
 (d) $x \equiv 5^{5999} \pmod{7}$.

5. Show that there do not exist integers x and y so that $x^2 + y^2 = 1234567$. (Hint: Write the equality as a congruence modulo 4.)

6. Find, in $(\mathbb{Z}/2\mathbb{Z})[x]$, an irreducible polynomial of degree 3, and explain why it is irreducible. Redo the problem with $(\mathbb{Z}/2\mathbb{Z})[x]$.

8. a. Using the Euclidean Algorithm, find the greatest common divisor d of 2904 and 3210.
 b. Find integers r and s such that $d = 2904r + 3210s$.

9. Use mathematical induction to prove that $1 + 3 + 5 + \cdots + (2n - 1) = n^2$ for every integer $n \geq 1$.

13. Use “Bézout’s Identity” to prove Euclid’s Lemma: If p is a prime integer and a, b are integers such that $p \mid ab$, then $p \mid a$ or $p \mid b$.

10. Write the list of $U(\mathbb{Z}/28\mathbb{Z})$, the group of units of $\mathbb{Z}/28\mathbb{Z}$. Underneath each element, list its order in $U(\mathbb{Z}/28\mathbb{Z})$. Show your work, and don’t use calculators, except possibly to check your answers.
11. You should not use calculators on this problem, except, perhaps, to check your work. Let \(G = \mathbb{U}(\mathbb{Z}/41\mathbb{Z}) \), the units of \(\mathbb{Z}/41\mathbb{Z} \) with multiplication as the operation. You are given the following information, which you should use freely:

\[
3^4 \equiv -1 \pmod{41} \quad \text{and} \quad 2^{10} \equiv -1 \pmod{41}.
\]

a. Show that the order of \([3]\) is 8 and that the order of \([2]\) is 20.

b. Find a power of \([2]\) whose order is 5.

c. Find an element of order 40. Explain. (Parts a. and b. are helpful here.)

12. Factor \(x^7 + x^3 + x + 1\) as a product of irreducible polynomials in \(\mathbb{Z}/2\mathbb{Z}\). Explain briefly why each of your factors is irreducible.

13. Find the GCD \(d(x)\) of \(x^3 + 1\) and \(x^7 + 1\) in \(\mathbb{Q}[x]\), and find polynomials \(f(x)\) and \(g(x)\) in \(\mathbb{Q}[x]\) such that \(d(x) = (x^3 + 1)f(x) + (x^7 + 1)g(x)\).

14. Solve the simultaneous congruences:

\[
x \equiv 32 \pmod{63}, \quad x \equiv 33 \pmod{64}, \quad x \equiv 34 \pmod{65}.
\]

15. Solve the simultaneous congruences:

a. \(x \equiv 2 \pmod{6}, \ x \equiv -3 \pmod{5}, \ x \equiv 8 \pmod{11}\).

b. \(x \equiv 22 \pmod{6}, \ x \equiv 103 \pmod{5}, \ x \equiv 42 \pmod{11}\).

16. Prove, by induction, that \(3^{2^n} - 1\) is divisible by 8 for every positive integer \(n\).

17. Let \(x\) be an integer relatively prime to 1001 (\(= 7 \cdot 11 \cdot 13\)). Prove that \(x^{60} \equiv 1 \pmod{1001}\).

18. Find an element of \(\mathbb{Z}/1001\mathbb{Z}\) with order 60 (Hint: use previous problem).

19. Prove that \(n^9 + 2n^7 + 3n^3 + 4n\) is a multiple of 5, for every integer \(n\).