Assignment 5 - Due Friday, April 5

1. Consider the unforced van der Pol equation
 \[u''(t) + (u^2 - 1)u' + u = 0. \]
 (a) Write the equation as a system of 2 ODEs;
 (b) Find the equilibrium points and study their stability by linearization.

2. Determine the stability of the equilibrium solutions of the system
 \[
 \begin{bmatrix}
 x'_1 \\
 x'_2
 \end{bmatrix}
 =
 \begin{bmatrix}
 -4x_1 - 2x_2 + 4 \\
 x_1 x_2
 \end{bmatrix}.
 \]

3. Find the equilibria of the nonlinear system below and study their stability
 \[
 \begin{bmatrix}
 u' \\
 v'
 \end{bmatrix}
 =
 \begin{bmatrix}
 u(v - 1) \\
 4 - u^2 - v^2
 \end{bmatrix}.
 \]

4. Consider the mass-spring nonlinear model with the equation
 \[x''(t) + kx'(t) + g(x) = 0, \]
 where \(g \) satisfies \(xg(x) > 0 \) for \(x \neq 0 \) and \(k > 0 \) is the friction constant.
 (a) Rewrite the equation as a nonlinear system of differential equations.
 (b) Show that the function
 \[
 V(x, y) := \frac{1}{2} + \int_0^x g(s)ds
 \]
 is a Lyapunov function. Is it a strict Lyapunov function?
 (c) Find an example that shows that the condition \(xg(x) > 0 \) for \(x \neq 0 \) is essential for stability.

5. Use the Lyapunov function \(V(x) = \frac{1}{2}(x^2 + 3y^2) \) to show that the origin of the system
 \[
 \begin{cases}
 x' = -3y \\
y' = x - \alpha(2y^3 - y)
 \end{cases}
 \]
 is asymptotically stable for \(\alpha < 0 \).

6. Consider the non-dimensionlized harmonic oscillator equation:
 \[x''(t) + bx' + \sin x = 0. \]
 Study the stability of the origin for all \(b \geq 0 \) by using the Lyapunov function given by the energy of the system, i.e. \(V(x, y) = 1 - \cos x + \frac{y^2}{2} \), where \(y = x' \).