398 Math in the City
Instructor: Petronela Radu
January 17, 2006

Homework 1

Due January 30

1. (30 points) What condition must be placed on a, b, and c so that the following system in unknowns x, y, and z has a solution?

$$
\left\{\begin{aligned}
x+2 y-3 z & =a \\
2 x+6 y-11 z & =b \\
x-2 y+7 z & =c
\end{aligned}\right.
$$

2. (a) (30 points) Find the general traffic pattern in the freeway network shown in the figure. (Flow rates are in cars/minute.)
(b) Describe the general traffic pattern when the road whose flow is x_{4} is closed.
(c) When $x_{4}=0$, what is the minimum value of x_{1} ?

3. (10 points) Alka-Seltzer contains sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$ and citric acid $\left(\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)$. When a tablet is dissolved in water, the following reaction produces sodium citrate, water, and carbon dioxide (gas):
$\mathrm{NaHCO}_{3}+\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \rightarrow \mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$.
Balance the chemical equation by using the vector equation approach discussed in class.
4. (10 points) Show that if λ is an eigenvalue of A , then λ^{2} is an eigenvalue of A^{2}.
5. (40 points) Consider the matrix

$$
A=\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

(a) Find the eigenvalues of the matrix A.
(b) Find a basis for each of the eigenspaces of A.
(c) Write the characteristic equation for A and $\operatorname{explain}$ why A is diagonalizable.
(d) Diagonalize A.
6. (15 points) Find the matrix of the linear transformation that deforms the square $[0,2] \times[0,2]$ into the parallelogram with vertices at the points $(0,0),(2,2),(2008,2),(2006,0)$. Find the area of the parallelogram by using the theorem about the determinant of the matrix of the linear transformation.
7. (15 points) Show that $2,2-t$, and t^{2} form a basis for \mathbb{P}_{2} (the set of polynomials of degree at most 2).

