Review Problems for Laplace Transform

1. Apply Duhamel’s Principle to write an integral solution for the solution of the following IVP:

\[x'' + 6x' + 9x = f(t), \quad x(0) = x'(0) = 0 \]

Solution: Consider the problem

\[y'' + 6y' + 9y = \delta(t), \quad y(0) = y'(0) = 0. \] \hspace{1cm} (1)

Duhamel’s principle gives us that a particular solution \(x_p \) for the given IVP can be computed as

\[x_p = y \ast f. \]

We use the Laplace transform in order to compute \(y \). From (1) we have:

\[L[y'' + 6y' + 9y] = L[\delta(t)] \]

which implies

\[(s^2 + 6s + 9)L[y] = 1. \]

Hence

\[L[y] = \frac{1}{s^2 + 6s + 9} = \frac{1}{(s + 3)^2}. \]

By using the shifted formula in \(s \) (#7 in the table from the front cover of the textbook) we get that \(y = e^{-3t} \). Hence,

\[x(t) = e^{-3t} \ast f(t). \]

2. Find the Laplace transform of

\[f(t) = \begin{cases}
\sin \pi t, & 2 \leq t \leq 3 \\
0, & \text{otherwise.}
\end{cases} \]

Solution: Write

\[f(t) = \sin \pi t(H(t - 2) - H(t - 3)) = H(t - 2) \sin \pi t - H(t - 3) \sin \pi t. \]

By one of the shifted formula (#8 from the table) we get that

\[L[f] = e^{-2s}L[\sin \pi (t+2)] - e^{-3s}L[\sin \pi (t+3)] = e^{-2s}L[\sin \pi t] + e^{-3s}L[\sin \pi t] = e^{-2s} \frac{\pi}{s^2 + \pi^2} + e^{-3s} \frac{\pi}{s^2 + \pi^2}. \]

Above we used that

\[\sin \pi (t + 2) = \sin(\pi t + 2\pi) = \sin \pi t \]

and

\[\sin \pi (t + 3) = \sin(\pi t + 3\pi) = -\sin \pi t \]