1. Solve the following systems by using eigenvalues and eigenvectors:
 (a) \(x' = x, \quad y' = 2x + 3y; \)
 (b) \(x' = x + 2y + 3z, \quad y' = 2y + z, \quad z' = z. \)

2. Prove that if \(\lambda \) and \(v \) are an eigenvalue, respectively, an eigenvector for the matrix \(A \), then \(x(t) = e^{\lambda t}v \) is a solution for the system \(x' = Ax \).

3. Use the eigenvalue method to solve:
 \[
 x' = \begin{bmatrix}
 a & 0 \\
 0 & b
 \end{bmatrix} x,
 \]
 for all real numbers \(a \) and \(b \). Do the eigenvectors depend on \(a \) and \(b \)?