1. Find the general solution for the equations:

 (a) \(u^{(3)} + 3u'' + 3u' + u = 5 \)

 (b) \((D - 1)(D^2 + 4)y = 2t\), where \(Dy = y'\).

2. Find the solutions for the DE \(x'' + mx = 0\) depending on all possible real values of \(m\).

3. Use the half-angle formulae:

 \[
 \sin^2 t = \frac{(1 - \cos 2t)}{2}, \quad \cos^2 t = \frac{(1 + \cos 2t)}{2}
 \]

 to solve the following IVPs:

 (a) \(2y'' + 8y = 4\sin^2 t, \quad y(\pi) = 0, \quad y'(\pi) = 1\)

 (b) \(z'' + 4z' + 4z = \cos^2 t, \quad z(0) = 2, \quad z'(0) = 0\).