Trisections of Surface Bundles over Surfaces

January 17, 2019

Marla Williams

Trisections

- Trisection: decomposes a <u>4-</u> manifold into three simple pieces (handlebodies)
- Existence: Gay/Kirby 2012
 - smooth
 - closed
 - orientable
 - connected

Trisections

 Trisection: decomposes a 4manifold into three simple pieces (handlebodies)

• Existence: Gay/Kirby 2012

• Diagrams:

Past Work

- Existence: smooth, orientable, closed (Gay/Kirby 2012); smooth, orientable, compact (Castro/Gay/Pinzón 2016, 2018)
- Genus 2 trisections standard (Meier/Zupan 2014)
- Lefschetz fibrations (Gay 2015, Castro/Ozbagci 2017, Baykur/ Saeki 2017)
- Diagrams: 3-manifold bundles over S^1 (Koenig 2017)
- Diagrams: spun 4-manifolds (Meier 2017)
- Bridge trisections of knotted surfaces: in S^4 (Meier/Zupan 2015); in 4-manifolds (Meier/Zupan 2017); in \mathbb{CP}^2 (Lambert-Cole 2018)

Surface Bundle over a Surface

 Bundle: locally a product of the base manifold with the fiber manifold; not necessarily a global product.

Surface Bundle over a Surface

 Bundle: locally a product of the base manifold with the fiber manifold; not necessarily a global product.

Base: S^1

Fiber: I

Current Work

 Gives an algorithm for drawing trisection diagrams of surface bundles over surfaces, given the monodromy representation of the bundle

Theorem (W. 2018) These diagrams are minimal when

$$\operatorname{rk} \pi_1 = 4 - \chi_b - \chi_f$$

where χ_b and χ_f are the euler characteristics of base and fiber

Diagram Construction

$$n := 3 - \chi_b$$

- - pairwise intersect at \boldsymbol{n} edges
 - triply intersect at 2n vertices

Diagram Construction

$$n := 3 - \chi_b$$

- - pairwise intersect at \boldsymbol{n} edges
 - triply intersect at 2n vertices

Diagram Construction

$$n := 3 - \chi_b$$

- - pairwise intersect at \boldsymbol{n} edges
 - triply intersect at 2n vertices
- Build surface from 1-skeleton

Building Σ Example: $S^2 \times T^2$

• Replace each vertex with 3punctured fiber

Building Σ Example: $S^2 \times T^2$

• Replace each vertex with 3punctured fiber

• Replace each edge with $I \times S^1$

Building Σ Example: $S^2 \times T^2$

- Replace each vertex with 3punctured fiber
- Replace each edge with $I \times S^1$
- Glue

Building Σ Example: $S^2 \times T^2$

- Replace each vertex with 3punctured fiber
- Replace each edge with $I \times S^1$
- Glue
- This yields a genus

$$(3-\chi_b)(3-\chi_f)+1$$

surface, where χb and χf are the euler characteristics of base and fiber

Example: $S^2 \times T^2$

Meridional curves on tubes

- Meridional curves on tubes
- Paired arcs across tubes, for fiber genus

- Meridional curves on tubes
- Paired arcs across tubes, for fiber genus
- Long curves

- Meridional curves on tubes
- Paired arcs across tubes, for fiber genus
- Long curves
- Adjust for nontrivial monodromy

Future Work

- Adapting to the relative case (manifolds with boundary)
- Bridge trisections of fiber or base within these trisections
- Submanifolds seen in the diagram (e.g. T^3 inside T^4)
- Monodromy conditions that give full rank π_1
- Find small genus surface bundles from small genus fibered 3manifolds

