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Surfaces have played a signi�cant role in the development of 3-manifold topology since
the very beginnings of the subject. Perhaps the �rst signi�cant result along these lines
was Kneser's proof [Kn] that every closed 3-manifold M can be decomposed along �nitely
many 2-spheres into irreducible pieces. This was also the �rst proof which made use of
normal forms for surfaces with respect to a triangulation of M .

Injective surfaces rose to prominence in 3-manifold topology in the 1960's with work of
Waldhausen, who proved nearly every major conjecture about the structure of 3-manifolds,
in the case that the 3-manifoldM (is irreducible and) contains an injective surface F . IfM
is irreducible and has in�nite fundamental group, then it has long been conjectured that the
universal cover of M must be R3, and any irreducible 3-manifold homotopy equivalent to
M must also be homeomorphic to M . Waldhausen [Wa] proved both of these conjectures,
if one adds the hypothesis that M contains an injective surface; we call such a manifold
Haken. These results have lent great weight to the validity of these conjectures in general.
In the same vein, much of the evidence in support of Thurston's Geometrization Conjecture
rests largely on Thurston's proof [Th1] of this conjecture for Haken manifolds.

Taut foliations provide another e�ective tool for the study of 3-manifolds. Work of
Gabai [Ga1] shows that every surface in M which has minimal genus in its homology
class is the leaf of a taut foliation of M ; the converse, that every compact leaf of a taut
foliation has minimal genus, is due to Thurston [Th2]. These results proved to be the
main tools needed to show that satellite knots have Property P [Ga2], and to solve the
Property R Conjecture for knots [Ga3], which was proved by building a taut foliation in
the manifold obtained by 0-frame surgery on a knot. The concepts of sutured manifold
decomposition, and thin position, which were �rst introduced in this work, have had a deep
and far-reaching in
uence on the development of low-dimensional topology, especially in
knot theory.

Essential laminations provide a simultaneous generalization of injective surfaces and
taut foliations, and have proved to have similar power in unlocking the structure of the
3-manifolds which contain them. Gabai and Oertel [GO] showed that any 3-manifold con-
taining an essential lamination has universal cover R3; Palmeira [Pa] had previously shown
this for tautly foliated 3-manifolds. Gabai and Kazez [GK] have shown that atoroidal mani-
folds containing genuine essential laminations have Gromov negatively curved fundamental
group, giving a `weak' form of Thurston's Geometrization Conjecture for these manifolds.

The principal investigator's research has largely dealt with essential laminations, focus-
ing on how to construct them, what they can tell us about the topology of the 3-manifold
containing them, and how the structure of the 3-manifold containing one is manifested
in the structure of the lamination. We plan to continue to show how laminations and
lamination-theoretic ideas can help us to understand the topology of 3-manifolds, espe-
cially in areas related to the Virtual Haken Conjecture and exceptional Dehn surgeries
on knots and 3-manifolds. We also plan to continue to explore the structure of sutured
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manifold decompositions, and the associated notion of the depth of a knot. These projects
are outlined in more detail below.

After discussing, in section 0, some of the basic concepts related to the proposed re-
search, in section 1 we describe a program for showing that many manifolds with essential
laminations are virtually Haken, and how this implies both geometrization and Wald-
hausen's theorem for these manifolds. In section 2 we discuss a program to use essential
laminations to study exceptional Dehn surgeries, and Seifert-�bered surgeries in particu-
lar. In section 3 we discuss sutured manifold hierarchies, and a project for building knots
with large depth. In section 4 we discuss the broader impact of the proposed research. In
section 5 we describe research carried out under previous NSF support.

0. Notation and de�nitions

For ease of exposition in the project descriptions in later sections, we collect here some
of the more common de�nitions and concepts, involving the objects we will consider.

L will always stand for a lamination, F is a codimension-one foliation, B is a branched
surface, K is a knot in the 3-sphere S3, F is a compact surface,M is a compact 3-manifold,

 is a simple closed curve, and I is the unit interval [0,1]. The exterior of an object J ,
that is, the complement of an open neighborhood of J , will be denoted X(J).

A properly embedded surface F in M is incompressible if its inclusion induces an
injection on the level of fundamental groups, and it is not a 2-sphere. F is @-incompressible
if inclusion induces an injection on the level of relative fundamental groups. F is injective
if it satis�es both conditions. A Seifert surface for a knot K is an orientable surface with
boundary equal toK. A Seifert surface which has minimal genus among all Seifert surfaces
for K is incompressible in X(K). A manifold is reducible if it contains a 2-sphere which
does not bound a 3-ball; otherwise it is irreducible. A manifold is toroidal if it contains
an embedded incompressible torus; otherwise it is atoroidal. A manifold is hyperbolic if it
admits a complete metric of constant sectional curvature �1. A Seifert-�bered space is a
compact 3-manifold which can be foliated by circles. A Seifert-�bered space is exceptional
if it does not contain an embedded incompressible torus. A graph manifold is a manifold
obtained by gluing Seifert-�bered spaces together along their boundary tori.

A codimension-one foliation F of a 3-manifold M is a way of expressing M as a
disjoint union of (usually non-compact) surfaces called leaves, which locally run parallel
to one another. A lamination L is a codimension-one foliation of a closed subset of M . A
lamination is genuine if it has at least one complementary region which is not an I-bundle
over a (usually non-compact) surface, with associated @I-bundle consisting of leaves of L.
A foliation F is Reebless if no leaf is a compressible torus; a foliation is taut if through every
leaf there is a loop 
 which is everywhere transverse to the leaves of F . Taut foliations are
Reebless. In both cases, the leaves of F inject into M on the level of �1.

A branched surface is a �nite two-dimensional complex B with a well-de�ned tangent
plane at each point. The non-manifold points of B are a union of closed loops intersecting
transversely; these loops are called the branch curves of B. The points of intersection of
the branch curves are called the triple points of B. The boundary of N(B) splits naturally
into the horizontal boundary, consisting of the boundary points of each I-�ber, and the
vertical boundary, consisting of annuli. The annuli correspond to the branch curves of B.
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The sectors of B consists of the metric completions of the connected components of Bn(the
branch curves). They are compact surfaces with corners at the triple points of B.

A lamination is said to be carried by a branched surface B if it can be embedded in
an I-�bered neighborhood N(B) of B so that each leaf is everywhere transverse to the
I-�bers. L is carried with full support if it meets every I-�ber of N(B). A lamination
L is essential if it is carried with full support by an essential branched surface; we refer
the reader to [GO] for a de�nition of this object. The most important property that an
essential lamination shares with injective surfaces and taut foliations is that each of its
leaves inject on the level of fundamental groups. A 3-manifold which contains an essential
lamination is called laminar.

Dehn surgery along a knot K consists of removing a neighborhood of the knot, leaving
a manifold with boundary a torus, and then gluing a solid torus D2 � S1 to the boundary
torus. The surgery is determined by which simple closed curve 
 on the boundary torus
is glued to the meridian disk of the solid torus. 
 is called the slope of the surgery. Dehn
�lling is the same procedure, except that the neighborhood of the knot has already been
removed.

A sutured manifold is a 3-manifold M together with a collection of disjoint simple
loops 
 in @M , which split @M into surfaces R+ and R�, with @M = R+ [ R� and
R+ \ R� = 
. The sutures 
 consist of cores of the vertical boundary annuli. M can
be split open, or decomposed, along any surface F transverse to 
 [Ga1], to obtain a new
sutured manifold. We call F a decomposing surface for (M;
).

A surface F in a 3-manifold M is in normal form with respect to a triangulation or
cell decomposition of M if it meets each 3-cell � of M in disks, so that each disk meets
each 1-cell in @� at most once. A lamination L is in normal form if each of its leaves is in
normal form.

1. Laminar manifolds are virtually Haken

Nearly all of the most important outstanding conjectures in 3-manifold topology have
been proved for Haken manifolds [Wa],[Th1]. But most irreducible 3-manifolds, in some
sense, are not Haken [Ha1]. It has long been conjectured, however, that every irreducible
3-manifold M with in�nite fundamental group has a Haken covering space with �nite de-
gree; such an M is said to be virtually Haken. An even stronger conjecture asserts thatM
has a �nite cover fM with in�nite �rst homology; this is equivalent to the assertion that the
fundamental group of fM surjects onto the integers Z. In this case we say that �1(M) (and,
by extension, M) is virtually Z-representable. Several recent papers [BZ1],[CL],[DT],[Ma]
,[MMZ] have demonstrated the existence of such �nite covers for several classes of mani-
folds, using a variety of techniques, from immersed injective surfaces to Heegard surfaces
to the properties of PSL2(C).

If a manifold M with no Z � Z in its fundamental group is virtually Haken, then
Thurston's geometrization theorem implies that M has a hyperbolic �nite cover, and so,
by [Ga4],[Ga5] M is itself hyperbolic. In addition, any irreducible 3-manifold homotopy
equivalent to M is homeomorphic to M [Ga5]. Consequently, �nding a Haken �nite cover
forM implies thatM is geometrizable and satis�es Waldhausen's Theorem, at least in the
(algebraically) atoroidal case. (The same is (almost) true for the toroidal case, as well.)
Therefore, showing that a laminar manifold M is virtually Haken would have a very large
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payo�; it implies the geometrizability of M , and that any irreducible manifold homotopy
equivalent to M is homeomorphic to M .

We propose to prove the virtual Haken conjecture, for a broad class of laminar 3-
manifolds. A lamination L is simple if it is carried by a branched surface B having no
triple points. Previous work of the proposer [Br1],[Br2] provides many examples of such
manifolds; in fact, non-trivial Dehn surgery on nearly half of the knots in the standard
tables [Rl] will yield a manifold with a simple essential lamination. The laminations con-
structed in these examples are in fact very simple, that is, the branched surfaces B have,
in addition, only a single branch curve. In the end, it will be the combinatorics of these
branched surfaces B, and not the fact that they carry laminations, which we will exploit
to prove the conjecture. The outline below therefore focuses on the branched surfaces, as
the main object of study.

Problem: Prove the virtual Haken conjecture, for the class of 3-manifolds con-

taining a simple essential branched surface.

For the purposes of the conjecture, we may assume that M is not itself Haken (since
otherwise we are done). Then by [Br3] we know that the exterior X(B) of B inM consists
of handlebodies. The fundamental group ofM is therefore a quotient of �1(B), obtained by
adding relators corresponding to a system of compressing disks for the handlebodies. For
a simple branched surface, �1(B) is very straightforward to describe. Our main approach
will be to identify �nite covers of M by �nding representations of �1(B) to �nite groups,
for which the added relators are sent to the identity. In the initial stages of the project,
we plan to focus on very simple branched surfaces, since these already provide a very large
class of 3-manifolds to which the results will apply.

First, we will need to identify the possible sets of relators which will arise from the
branch curves of an essential, very simple, branched surface. In our setting, the property
that B is essential boils down to the fact that the complement of the branch curves,
in the boundary of the handlebodies X(B), is incompressible in X(B). Two essentially
di�erent methods have been developed to characterize the incompressibility of @H n 

in a handlebody H. The �rst is largely geometric, using the notion of waves [St]. The
second is algebraic, and uses the notion of a group element (corresponding to 
) binding
the fundamental group of H [Ly]. Each of these, in the end, involve the existence of a set
of compressing disks meeting 
 in an appropriate way. These properties should help us to
get a handle on the kinds of relators that will arise in our constructions.

Problem: Determine the structure of �1(M) as a quotient of �1(B) for B a

simple essential branched surface. Use this to build �nite covers of M , by �nding

representations of �1(B) to �nite groups.

Showing that a 3-manifoldM has a non-trivial �nite cover is a highly non-trivial task;
it is, in fact, still an open problem in general. Our approach will be to search for covers in
which the lift of the branch curve is a single curve; the total space of such a cover will then
still satisfy the same hypothesis, and so we can recursively build an in�nite chain of �nite
covers. We will begin by looking at speci�c classes of Dehn surgeries on knots; many of
the knot surgeries successfully treated in [MMZ], for example, are known to contain simple
laminations [Br2]. By examining the structure of the covers, from the point of view of the
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simple branched surface B, we expect to begin to develop the kind of insight necessary to
build �nite covers, in more generality.

Once we have developed techniques to construct �nite covers, we will need to be able
to establish that they are Haken. From the point of view of virtual Z-representability, this
amounts to showing that a map of the fundamental group to Z is onto. Again, this should
be possible to verify, by having a suÆciently good understanding of the structure of the
relators needed, for �1 of the lift of B, to present the fundamental group of the cover.

Problem: Develop methods to establish the existence of essential surfaces in

manifolds containing simple essential branched surfaces.

We will also pursue a more geometric approach to this problem, by using the lift eB of
the branched surface B to build essential surfaces in the cover. We cannot expect eB itself
to carry a compact surface; if we interpret the existence of the surface as a system weights
on the sectors of eB, then by projecting down we obtain a system of weights on B, and
hence a compact surface. But most simple branched surfaces carry no compact surfaces.
Instead we must look for surfaces transverse to eB. M can be viewed as being built from
the handlebody complements H of B, via gluings along the incompressible surfaces @H n
.
Such a structure is inherited by the covers of M . This structure has many characteristics
in common with both bundles over the circle and Heegaard splittings; in both cases, there
is much that can be said about incompressible surfaces in M [CG],[CJR],[FH],[He],[Hh].
Corresponding results are likely to hold in our context.

2. Exceptional Dehn surgeries on knots

A great deal of recent research in 3-manifold topology owes its motivation to Thurston's
Hyperbolic Dehn Surgery Theorem [Th3], which states that all but �nitely many Dehn
�llings along the boundary torus of a hyperbolic 3-manifold are hyperbolic. This has led
to a great deal of research into when, and in particular, how often the Dehn �lling on a
hyperbolic manifold or knot fails to be hyperbolic. Thurston's Geometrization Conjecture
[Th1] asserts that failure to be hyperbolic can be detected topologically; a non-hyperbolic
closed 3-manifold must either have �nite �1, contain an essential sphere or essential torus,
or be an exceptional Seifert-�bered space.

There is now a very good picture describing when most of these possibilities can occur;
these results are largely described in terms of how far apart (measured as the minimal
intersection number of the two Dehn �lling curves) exceptional surgeries of each of the
four types can be. For the �rst three types, the papers [BZ2],[Go],[Wu1],[Oh],[GL],[CGLS]
taken together provide a nearly complete picture of how such exceptional surgeries occur.

To date however, the remaining case, exceptional Seifert �bered spaces, has proved
to be far more diÆcult. We showed [Br4], using essential laminations, that at most 20
Dehn �llings can be �nite, reducible, toroidal, or exceptional Seifert �bered, but this has
since been eclipsed [Ag],[La] in the general case by results using techniques based on the
2��Theorem [BH] and negatively-curved groups.

Our approach in [Br4] was to use the observation [Br5] that exceptional Seifert �bered
spaces do not contain genuine essential laminations. Using a construction of essential
laminations in hyperbolic 3-manifolds [GM],[Mo], we observed that all Dehn �llings o� of
four lines in Dehn surgery space contain genuine essential laminations. Combined with the
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2��Theorem, this gave our bounds on exceptional surgeries. This approach was later used
in [BGZ] to understand Seifert-�bered surgery slopes of Haken hyperbolic 3-manifolds.

We can therefore use essential laminations to determine that Dehn surgery on a knot
does not yield an exceptional Seifert-�bered space, by building genuine essential lamina-
tions in the surgered manifolds [Br5]. Wu [Wu2] has shown that one can similarly use
essential laminations to spot Dehn �llings that have no injective tori. In joint work with
Wu [BW], we used these approaches to completely classify manifolds obtained by Dehn
surgery on 2-bridge knots, according to whether they are reducible, toroidal, exceptional
Seifert-�bered, have �nite fundamental group, or are hyperbolic.

There are only a few other classes of knots whose Dehn surgeries are completely
characterized in this way. Torus knot surgeries can be understood directly [Ms], and
surgeries on some families of arborescent knots can be classi�ed [Wu3] using Thurston's
Geometrization Theorem (since the surgeries are all Haken). We propose to use essential
laminations, and in particular the techniques of [Br5] and [Wu2], to carry out similar
classi�cations, using the approach developed in [BW]. In particular, we propose to apply
these techniques to the laminations built by Delman and Roberts [DR] for alternating
knot surgeries, to produce a classi�cation of the manifolds obtained by Dehn surgery on
alternating knots.

Problem: Classify the Dehn surgeries on alternating knots, according to their

geometric structures.

In some cases this will involve developing new families of essential laminations, to
apply these techniques directly. There are two basic methods for constructing essential
laminations in knot surgeries. With the �rst, one builds in�nitely many essential lamina-
tions in the exterior X(K) of K, meeting the boundary in loops, which `cap o�' to give
essential laminations in each Dehn �lling along K. For example, this is the approach taken
by Hatcher [Ha2], for 2-bridge knots, and Roberts [Ro], for most alternating knots. The
other approach is to build a single essential lamination L in the complement of K, which
remains essential under every non-trivial Dehn surgery along K, known as a persistent

lamination. This is the approach taken by Delman [De] for two-bridge knots, by Wu [Wu3]
for arborescent knots, and by the proposer [Br1],[Br2] for several in�nite families of knots.
The latter method seems to be more suited to the classi�cation of exceptional surgeries, in
light of [Br5] and [Wu2]; the results of those papers are based largely on an understanding
of the structure of the component of the complement of L containing the knot K. We
therefore expect that an eÆcient approach to our problem will involve building persistent
laminations for the alternating knots for which the only known examples of laminations
come from Roberts' constructions. We expect that the techniques of [Br1],[Br2], building
persistent laminations for knots from incompressible Seifert surfaces of \simpler" knots,
will succeed in most cases, since incompressible Seifert surfaces for alternating knots can
be built by Seifert's algorithm [Se].

Problem: Construct persistent laminations for all non-torus alternating knots.

3. Hyperbolic knots with high depth

Given a knot K in S3 and a Seifert surface � for K, Gabai [Ga1] showed that if �
has least genus among all Seifert surfaces for K, then � is the sole compact leaf of a �nite
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depth foliation of the exterior X(K) of K. Thurston [Th2] showed that the converse is
true: a compact leaf of a taut foliation has minimal genus in its homology class. A foliation
F has �nite depth if all leaves are proper (i.e., no leaf limits on itself in the transverse
direction) and there is an upper bound to a chain of proper inclusions L0 � L1 � � � � � Ln
of closures of leaves of F . n is called the depth of the foliation. The smallest n among all
foliations having � as sole compact leaf is called the depth of �, and the smallest depth
among all minimal genus Seifert surfaces for K is called the depth of K.

The practical value of Gabai's and Thurston's results are that they show that a Seifert
surface can be certi�ed to have minimal genus by building a �nite depth foliation for which
it is a leaf, and that such a certi�cation is always possible. Gabai used this technology, for
example, to compute the genera of the knots through 10 crossings [Ga6], to give a geometric
proof that Seifert's algorithm applied to a reduced alternating projection of a knot yields
a least genus Seifert surface [Ga7], and to compute the genera of the arborescent knots
[Ga8].

Gabai's result, showing that a �nite depth foliation can be built around a minimal
genus surface, proceeds by building the foliation \one leaf at a time" (each leaf raising the
depth by one). With appropriate choices, the complements of the leaves added up to each
point can be shown to be \more nearly a product (surface)�I" than at the previous stage,
in a precise sense; when the complement is a product, the remainder can be foliated without
raising the depth any further. The sequence of surfaces chosen in building the foliation
of X(K) constitutes a sutured manifold hierarchy [Ga1] of the knot exterior X(K). The
depth of � (resp. K), which corresponds to the length of the sutured manifold hierarchy,
can therefore be interpreted as the fewest number of added leaves needed to produce a
product complement, and so measures how far X(�) (resp. X(K)) is from a product
(resp., a bundle over the circle).

In all of Gabai's examples above, the depth of the foliation built by Gabai is at most
one. Thus all of these knots have depth at most one; they are at most \one step away"
from being �bered. A natural question, then, is whether or not there are knots with depth
greater than one. This was answered in the aÆrmative by Cantwell and Conlon [CC1],
who showed, in fact, that there are knots of arbitrarily large depth. The essential point is
that the untwisted double K 0 of a non-trivial knot K has depth at least one higher than
the depth of K. Iterated doubling therefore gives knots of arbitrarily large depth. These
knots, however, have many essential tori in their complements; this is, in essence, why the
depth is so high. Cantwell and Conlon therefore asked if there is a knot with atoroidal
complement, that is, a hyperbolic knot, with depth greater than one.

In [Ko], Kobayashi gave an example of such a knot K; in particular, he constructed
a hyperbolic knot K with a unique minimal genus Seifert surface � which is the leaf of
a depth 2, but not of a depth 1, foliation of X(K). His proofs rely on a combinatorial
argument to show that the surface is unique, and a computation of the unit ball in the
Thurston norm of X(K), along with a result of Cantwell and Conlon [CC2], to show that
� is not the leaf of a depth 1 foliation. Finally, he explicitly builds a depth 2 foliation for
which � is a leaf.

In recent work [Br6], we have shown how to reproduce much of Kobayashi's results,
in a much broader context. We start with a construction of knots K with free genus-1
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Seifert surfaces [Br7], that is, the exterior X(�) of � is a genus-2 handlebody. The knot
K, thought of as lying in the boundary of X(�), determines a word w in the free group on
two letters F (a; b) = �1(X(�)). We demonstrate that the uniqueness of the Seifert surface
can be inferred from the combinatorics of the word w, using the fact that non-uniqueness
implies the existence of distinct disjoint Seifert surfaces [ST]. Then we apply an algorithm
of K. Brown [Bro] for computing the Bieri-Neumann-Strebel invariant [BNS] of the one-
relator group ha; b : wi to develop conditions on w suÆcient to imply that the surface �
is not the leaf of a depth one foliation, utilizing the same result of Cantwell and Conlon
above. In�nitely many (in some sense, in fact, most) of the knots from the construction
pass through these two \�lters", to emerge as examples of knots with depth at least two.
All of the resulting knots are hyperbolic. For both \�lters", combinatorial properties of
the word w ensure that the property that we desire is satis�ed.

It is not known if any or all of these surfaces built in this way have depth two. In fact,
we strongly suspect that most of them have depth greater than two, and so the resulting
knots have depth greater than two. To date, however, there is no technique to show that
a Seifert surface, and hence a knot, has depth greater than two. We plan to develop such
techniques, in the context in which our examples have been found, namely, among free
minimal genus Seifert surfaces.

Problem: Develop conditions under which, for n > 2, a free Seifert surface

cannot be the leaf of a depth n foliation.

In this context, all of the topology of the situation is captured by the word w repre-
senting the knot K in �1(X(�)), and so the property of having depth greater than two is,
in theory, a group-theoretic one; we propose to develop suÆcient conditions on w for the
depth of K to be at least n, using combinatorial group theory. As a starting point, there
are higher geometric invariants of groups [BiR], similar to the BNS invariant, which may
shed light on this. Initially we will search for isolated examples, as Kobayashi did. But the
goal is to �nd broad families of knots with high depth, if they exist, as we managed to do
for depth greater than one. An exploration of some of the simpler examples arising from
the construction above should help to provide insight into the kinds of sutured manifold
hierarchies we should focus on. Recent work of Agol and Li [AL] provides an algorithmic
approach to the construction of such hierarchies.

The main goal of this project is to understand the process of sutured manifold de-
composition; Gabai's construction of a foliation \one leaf at a time" is, after all, really
the construction of a sutured manifold decomposition of the knot exterior. We therefore
expect that our studies of the depth of knots will shed light on the process of sutured
manifold decomposition as a whole, and speci�cally to provide insight into when such a
decomposition must have large length. There is an analogous concept of a hierarchy for a
Haken 3-manifold, which puts fewer restrictions on the surfaces used in the decomposition;
in that case it is known [Ja] that every Haken manifold has a hierarchy of length at most
four. We do not expect such a result in our context, although any result along similar lines
would be both surprising and potentially useful. Recent work [HKM] has demonstrated
how sutured manifold decompositions can give rise to tight contact structures, and so this
project has the potential to shed light on their behavior, as well.
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4. Broader impact and integration of research and education

The principal investigator carries out many activities designed to communicate mathe-
matical ideas to a wide audience. He regularly presents his work to research-level audiences
at colloquia, meetings, and conferences. The investigator has also given talks to both un-
dergraduate and high school audiences; the topics of these talks are informed by, and in
many instances a direct result of, his research endeavors.

The investigator has also organized conferences for both specialized and general math-
ematical audiences. He has co-organized two special sessions at AMS meetings. He has a
recurring role at the lead organizer for the annual Regional Workshops in the Mathemat-
ical Sciences at the University of Nebraska. These workshops have the goal of informing
students about research in the mathematical sciences, especially among undergraduates
considering graduate work in the mathematical sciences. They also provide a forum for
contact between University of Nebraska students and faculty and students and researchers
in mathematics, statistics, and computer science at undergraduate institutions within a
region encompassing Nebraska, Kansas, Missouri, Iowa, North and South Dakota, and
beyond.

The investigator maintains a website linking together resources within the low-dimens-
ional topology community, which is visited approximately 250 times each week. The most-
often visited portions of the site include a comprehensive list of low-dimensional topologists'
homepages, and links to upcoming meetings and conferences.

The investigator expects that parts of the last project described in this proposal will
prove to be suitable for the involvement of undergraduates in a directed research project.
In particular, the combinatorial aspect of the words w in the fundamental group of the
handlebody, and their group-theoretic signi�cance, are suitable for such explorations. The
University of Nebraska has several programs in place to provide funding for undergraduates
engaged in research with faculty; the investigator plans to apply for such funding at the
appropriate stage of the project.

5. Results from Prior NSF support

During 1997 - 2000 the proposer was supported by NSF grant number DMS-9704811,
originating at Vassar College, which was transferred to the University of North Texas in
the second year as NSF grant number DMS-9896215. During the period of the grant he
carried out research which has resulted in seven papers. He also had an additional seven
papers appear in or be accepted for publication in refereed journals; all of these papers
underwent some revision during the grant period.

During the contract period we �nished a collection of new constructions of laminations
in knot complements, which remain essential under every non-trivial Dehn �lling along
the knot; these laminations are called persistent for the knot. These constructions were
motivated by an example of Oertel [Oe] of a persistent lamination in the complement of
the knot 52 (in Rolfsen's tables [Rl]). In the paper Persistently laminar tangles [Br1] we
showed how to associate Oertel's lamination with a certain tangle T , in the sense that this
lamination would also be persistent for any knot obtained by tangle sum with T . We also
showed how to build similar laminations for several families of related tangles. This paper
has appeared in J. Knot Thy. Ram.
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Oertel's lamination also turned out to be the �rst of an in�nite family of laminations,
in an altogether di�erent sense. We showed, in the paper Persistent laminations from

Seifert surfaces [Br2], how to use an incompressible Seifert surface F for a knot K to build
a lamination that is persistent for an in�nite family of knots built from K and F . Oertel's
lamination, it turns out, is the lamination that would be built by this construction from
a disk spanning the unknot. We then instituted a search, aided by the computer program
SnapPea [We], of the knots in the standard knot tables that could be persistently laminated
by this construction. To date this has succeeded in �nding persistent laminations for
slightly less than half of the knots in the standard tables. This paper has appeared in J.
Knot Thy. Ram.

The work of the previous paragraph required an incompressible Seifert surface for a
knot as input, and this motivated us to study the most well-known method for gener-
ating Seifert surfaces: Seifert's algorithm [Se]. We were interested in discovering when
Seifert's algorithm would build an incompressible Seifert surface for a knot, and in particu-
lar whether or not it could build every incompressible (free) Seifert surface for a knot. We
were able to determine the answer to this second question - no - by �nding a relationship
between the genus of a surface built by Seifert's algorithm and the volume of the knot
complement. In particular, we showed that if Seifert's algorithm can build a surface of
genus g for the hyperbolic knot K, then the complement of K can have volume at most
122g. This implies that if a knot has large volume, then Seifert's algorithm, applied to any
projection of K, must always build a surface of high genus. This result was written up in
the paper Bounding canonical genus bounds volume [Br8].

On the other hand, we found a method for generating hyperbolic knots which have
incompressible free Seifert surfaces of genus one, but arbitrarily large volume. The method
involved repeatedly doing Dehn �lling on certain unknotted loops in the complement of an
incompressible free genus one surface F0 for an initial knot K0, e.g., the `planar' surfaces
for a pretzel knot. The �lling carries F0 to a new incompressible free Seifert surface for
a new knot K; we then used Thurston's Geometrization Theorem [Th1] and estimates
of Adams [Ad] to ensure that the knot K is hyperbolic and has large volume. Together
with the previous paper, this provides examples of knots with incompressible free Seifert
surfaces which cannot be obtained by Seifert's algorithm for any projection of K. These
results were written in the paper Free genus one knots with large volume [Br7], which has
appeared in Paci�c J. Math..

Another source of incompressible free Seifert surfaces comes from the disk decom-
posable surfaces of Gabai [Ga7]; the process of disk decomposition was introduced as a
practical method for computing the genus of a knot K. If a surface is disk decomposable,
it is automatically free and has minimal genus among all Seifert surfaces for K. We then
asked whether the converse to this is true: must a free Seifert surface for K which has
minimal genus be disk decomposable? Using work of Goda [Gd], who gave a suÆcient
condition for a sutured handlebody to not be disk decomposable, we were able to show
that several families of Seifert surfaces built along the lines of the previous paper were free,
had minimal genus for their boundaries, and were not disk decomposable. These results
were written up in the paper Free Seifert surfaces and disk decompositions [Br9], which
has appeared in Math. Zeit.
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We also carried out collaborative work with a group of mathematicians in Japan,
begun at a workshop on laminations held at Nara Women's University and organized by
Tsuyoshi Kobayashi. We were interested in exploring the interplay between normal forms
for laminations and persistent laminations for knots. We showed how to apply the exis-
tence of essential laminations in normal form with respect to a regular cell decomposition
for a knot [Br10] to build persistent laminations for a knot, using a very standard cell
decomposition arising from a projection of the knot, with two 3-cells consisting essentially
of the 3-balls lying above and below the projection plane. The structure of the normal
disks turn out to have intriguing connections with the work of Menasco and Thistlethwaite
[MT] on incompressible surfaces in the complement of an alternating knot. This work was
written up in the paper Essential laminations and branched surfaces in the exteriors of

links [BHHKS], which has been submitted for publication.

We also explored the connection between taut foliations and R-covered foliations. In
the paper Tautly foliated 3-manifolds with no R-covered foliations [Br11], we showed that
certain graph manifolds have taut foliations but no R-covered ones. On the other hand,
they all have �nite covers which admit R-covered foliations. This last observation follows
from a result of Luecke and Wu [LW]; they show that most graph manifolds admit �nite
covers having foliations which restrict on each Seifert-�bered piece to foliations transverse
to the circle �bers. We show that any such foliation is R-covered, extending our previous
result about foliations transverse to the �bers of a Seifert-�bered space [Br5]. This paper
has appeared in the Proceedings of the Conference on Foliations: Geometry and Dynamics,
Warsaw, 2000.

In addition to these projects, seven papers appeared in print or were accepted for
publication during the period of the grant, which underwent varying degrees of revision
during the grant period. These papers were largely the result of two projects: studying the
structure of essential laminations in Seifert-�bered spaces and in 3-manifolds containing
injective tori, and studying how essential laminations in the complement of a knot K
provide information about the structure of the manifolds obtained by Dehn surgery on K.

The paper Graph manifolds and taut foliations [BNR], joint with Ramin Naimi and
Rachel Roberts, explored the extent to which the gluing maps between boundary compo-
nents of Seifert-�bered spaces, used to build a graph manifold M , a�ect the topological
and smoothness properties of the taut and Reebless foliations of M . We discovered that
the gluing maps could restrict the behavior of the manifold's foliations in very unexpected
ways.

The results of this paper were supported by three others. In When incompressible

tori meet essential laminations [BR], joint with Rachel Roberts, we showed that a taut or
Reebless foliation could almost always be split along an incompressible torus to give taut
or Reebless foliations in each piece of the split open manifold, with the exception of one
well-known and well-understood case. In Essential laminations in Seifert-�bered spaces

: Boundary behavior [Br12] and Essential laminations in I-bundles [Br13], we completed
work begun in [Br14] to describe the structure of essential laminations in Seifert-�bered
spaces. Together these papers showed that essential laminations in Seifert-�bered spaces
are, with a few well-known exceptions, always everywhere transverse to the circle �bers
of the �bering. Together with work of Jankins and Neumann [JN] and Naimi [Na], these
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papers provide a determination of all of the boundary slopes of essential laminations in
Seifert-�bered spaces.

Taken together, the second paper shows that a taut foliation (for example) in a graph
manifold must come from taut foliations in its Seifert-�bered pieces; the third and fourth
papers show how those foliations must meet the boundary tori of the pieces, i.e, what range
of boundary slopes would be possible. The �rst paper then analyzed how the gluing maps
could match up these collections of boundary slopes, to determine when a taut foliation
could exist in the �rst place.

The other main project dealt with using essential laminations in the complement of
a knot to determine the geometric structure of the manifolds obtained by Dehn surgery
on the knot. Gabai and Mosher [Mo] showed that every cusped hyperbolic 3-manifold
M contains an essential lamination L which remains essential under `most' Dehn �llings
of the cusp. In the �rst of our papers, Essential laminations, exceptional Seifert-�bered
spaces, and Dehn �lling [Br5], we showed how these laminations could be used to improve,
to 20, the previous bound of 24 [BH] on the number of Dehn �llings of M which could
be reducible, toroidal, �nite-�1, or exceptional Seifert-�bered. This bound has since been
improved upon by later work of other [Ag],[La], but the techniques of this paper can still
provide better bounds, when more information about the lamination L is known.

We also used similar techniques to study surgeries on 2-bridge knots. In the paper
Exceptional Seifert-�bered spaces and Dehn surgery on 2-bridge knots [Br5] we showed that
non-integral surgery on a non-torus 2-bridge knot could never yield an exceptional Seifert
�bered space, con�rming, for these knots, a conjecture of Cameron Gordon. In the paper
The classi�cation of Dehn surgeries on 2-bridge knots [BW], joint with Ying-Qing Wu,
we extended this work to completely classify the surgeries on 2-bridge knots, determining
when they are reducible, toroidal, exceptional Seifert-�bered, or hyperbolic.
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