THE CLASSIFICATION OF DEHN
SURGERIES ON 2-BRIDGE KNOTS

MARK BRITTENHAM AND YING-QING WU

ABsTRACT. We will determine whether a given surgery on a 2-bridge knot is reducible,
toroidal, Seifert fibered, or hyperbolic.

In [Th1] Thurston showed that if K is a hyperbolic knot, then all but finitely many
surgeries on K are hyperbolic. In particular, for the Figure 8 knot, it was shown
that exactly 9 nontrivial surgeries are non-hyperbolic. Let K/, be a 2-bridge knot
associated to the rational number p/q. When p = £1 mod ¢, K is a torus knot, on which
the surgeries are well understood. By [HT], all other 2-bridge knots are hyperbolic,
admitting no reducible surgeries. Moreover, K/, admits a toroidal surgery if and only
if p/q = [r1,72] = 1/(r1 — 1/r3) for some integers r1,75. See Lemma 8 below for a
complete list of all toroidal surgeries. The Geometrization Conjecture [Th2] asserts
that if a closed orientable 3-manifold is irreducible and atoroidal, then it is either a
hyperbolic manifold, or a Seifert fibered space whose orbifold is a 2-sphere with at most
three cone points, called a small Seifert fibered space. The conjecture has been proved
for two large classes of manifolds: the Haken manifolds [Th2|, and those admitting an
orientation preserving periodic map with nonempty fixed point set [Th3,Ho,KOS,Zh].
It can be shown that surgery on a 2-bridge knot yields a manifold which admits such
a periodic map, so it has a geometric decomposition. Our main result will classify all
surgeries on 2-bridge knots according to whether they are reducible, toroidal, Seifert

fibered, or hyperbolic manifolds.
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We use [by, ..., by] to denote the partial fraction decomposition 1/(by —1/(bg—...—
1/b,)...). Recall that a 2-bridge knot K is a twist knot if it is equivalent to some K, /,
with p/q = [b, £2] for some integer b. Since [b, 2] = [b F 1, F2], we may assume that
b is even. Let K(v) be the manifold obtained by 7 surgery on K. We always assume
that v # oo, that is, the surgery is nontrivial. (4) and (5) in the following theorem are

well known. They are included here for the sake of completeness.

Theorem 1. Let K be a 2-bridge knot.

(1) If K # K, p,] for any by, bs, then K () is hyperbolic for all .

(2) If K = Kp, p,] with |by],|b2| > 2, then K(v) is hyperbolic for all but one -,
which yields toroidal manifold. When both by and by are even, v = 0. If by is odd and
by is even, v = 2bs.

(3) If K = Ko 49) and |n| > 1, K(v) is hyperbolic for all but five v: K(v) is
toroidal for v = 0,F4, and is Seifert fibered for v = F1,F2,F3.

(4) If K = Ky _9 is the Figure 8 knot, K() is hyperbolic for all but nine y: K(v)
1s toroidal for v = 0,4, —4, and is Seifert fibered for v = —1,—-2,-3,1,2,3.

(5) If K = Ky is a (2,b) torus knot, K(v) is Seifert fibered unless v = 2b. K(2b)

18 a reducible manifold.

The reader is referred to [GO] for definitions and basic properties concerning essential
branched surfaces and essential laminations, which play a central role in the proof
of the theorem. In [Del, De2] Delman constructed essential branched surfaces and
laminations in 2-bridge knot complements, which are persistent in the sense that they
remain essential after all nontrivial surgeries. Brittenham [Br] showed that if M is
a small Seifert fibered space containing an essential branched surface F, then each
component of M — IntN(F) is an I bundle over a compact surface G. This is a very
useful criteria in determining which manifolds are small Seifert fibered spaces. Before
proving the theorem, we need to review some results of [Del, De2].

For each rational number p/q, there is associated a diagram D(p/q), which is the

minimal subdiagram of the Hatcher-Thurston diagram [HT, Figure 4] that contains
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all minimal paths from 1/0 to p/q. See [HT, Figure 5] and [Del]. D(p/q) can be
constructed as follows. Let p/q = [a1,...,ax] be a partial fraction decomposition of
p/q. To each a; is associated a “fan” F,, consisting of a; simplices, see Figure 1(a)
and 1(b) for the fans Fy and F_4. The edges labeled e; are called initial edges, and
the ones labeled e are called terminal edges. The diagram D(p/q) can be constructed
by gluing the F,, together in such a way that the terminal edge of Fj, is glued to the

initial edge of F,, ,. Moreover, if a;a;41 < 0 then F,, and F have one edge in

Ai41
common, and if a;a; 41 > 0 then they have a 2-simplex in common. See Figure 1(c) for

the diagram of [2, -2, —4, 2].

0/1 1/3
€1 ) e )
1/0 1 12 2/5
(@ (b) (©)
Figure 1

To each vertex v; of D(p/q) is associated a rational number r;/s;. It has one of
the three possible parities: odd/odd, odd/even, or even/odd, denoted by o/o, o/e, and
e/o, respectively. Note that the three vertices of any simplex in D(p/q) have mutually
different parities.

We consider D(p/q) as a graph on a disk D, with all vertices on 0D, containing 0D
as a subgraph. The boundary of D forms two paths from the vertex 1/0 to the vertex
p/q. The one containing the vertex 0/1 is called the top path, and the one containing
the vertex 1/1 is called the bottom path. Edges on the top path are called top edges.
Similarly for bottom edges.

Let Ay, Ay be two simplices in D(p/q) with an edge in common. Assume that the
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two vertices which are not on the common edge are of parity o/o. Then the arcs
indicated in Figure 2(a) and (b) are called channels. A path o in D(p/q) is a union of

arcs, each of which is either an edge of D(p/q) or a channel.

o/o o/o olo o/o

Figure 2

Let a be a path in D(p/q). Let v be a vertex on a. Let ey, ey be the edges of «
incident to v. Then there is a fan F,, in D(p/q) with ey, es as initial and terminal edges.
The number of simplices in F,, is called the corner number of v in «, denoted by ¢(v; @)
or simply ¢(v). A path « from 1/0 to p/q is an allowable path if it has at least one
channel, and ¢(v) > 2 for all v in «.

Now assume that K = K/, is a 2-bridge knot. Then ¢ is an odd number. Recall

that Kp/q = Kp/q if p = pjEl mod ¢q, and K is the mirror image of Kp/q. We

—p/q
may assume without loss of generality that p is even, and 1 < p < ¢. This is because
K (4—p)/q is equivalent to the mirror image of K, /4, so the result of v surgery on the
first is the same as that of —y surgery on the second. Note that ¢ — p and p have
different parity, since ¢ is odd. The following result is due to Delman. See [Del] and

[De2, Proposition 3.1].

Lemma 2. Given an allowable path o of D(p/q), there is an essential branched surface

F in S — K which remains essential after all nontrivial surgeries on K. [J

Lemma 3. If there is an allowable path « in D(p/q) such that c(v) > 2 for some

verter v in «, then K () is not a small Seifert fibered space for any ~y.
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Proof. Tt was shown in [Br, Corollary| that if F is an essential branched surface in a
small Seifert fibered space M, then each component of M — IntN(F) is an I-bundle
over a compact surface G, such that the vertical surface 0, N(F) (also called cusps) is
the I-bundle over OG. It has been shown in [Del] that for each vertex v of « there is
a component W, of S — IntN(F) such that W, is a solid torus whose meridian disk
intersects the cusps ¢(v) times. In particular, if ¢(v) > 2 then W, is not an I bundle
as above. Since F is an essential branched surface in K (), it follows that K(vy) is not

a small Seifert fibered space. [

Lemma 4. Suppose p is even, q is odd, and 1 < p < q—1. If p/q does not have partial
fraction decomposition of type [r1,r3], then D(p/q) has an allowable path o such that

some vertex v on o has c(v) > 2.

Proof. Let [ay,...,ay] be the partial fraction decomposition of p/q such that all a;
are even. Then ay; > 2. If a; = 2 for all i, then p/q = (¢ — 1)/q, contradicting our
assumption. Thus either some a; < 0, or some a; > 4. We separate the two cases.

CASE 1. Some a; < 0.

Let a; be the first negative number. Then a;_; > 0, so there is a sign change. By
[De2] there is a channel «g in F,, , U F,, starting at a bottom edge and ending at a
top edge, where F,, is the fan in D(p/q) corresponding to a;. Let oy be the part of the
bottom path of D(p/q) from the vertex 1/0 to the initial point of g, and let as be the
part of the top path from the end point of ay to the vertex p/q. Then o = a; Uy U
is an allowable path in D(p/q). We need to show that if ¢(v) = 2 for all vertices v on
this path, then p/q = [r1, r2] for some r1,r;.

Consider the vertices on ;. Since c(v;) = 2 for all v;, each vertex v; is incident
to exactly one non boundary edge e; of D(p/q), which must have the other end on
a vertex v, in the top path. If some of these v are different, then since all faces
of D(p/q) are triangles, it is clear that some v; on «; would have at least two non
boundary edges, which would be a contradiction. Similarly, each vertex on ay has a

unique non boundary edge, leading to a common vertex on the bottom path, so the



diagram D(p/q) looks exactly as in Figure 3(a). It is the union of two fans F,., and
F,., with r; > 0, and ry < 0. Therefore, p/q = [r1, r2].

CASE 2. Some a; > 4.

In this case there is a channel oy with both ends on the bottom path. Construct
an allowable path a = a1 U ag U as with aq, as in the bottom path. Similar to Case
1, it can be shown that each vertex on «; has a unique non boundary edge leading to
a common vertex v; on the top path, so D(p/q) looks like that in Figure 3(b). In this
case p/q = [r1, 2], with both r; > 0. [

(a) (b)
Figure 3

Lemma 5. Let K = K,/ be a two bridge knot such that p/q = [r1,72], and |r;| > 3

fori1=1,2. Then no surgery on K is a small Seifert fibered space.

Proof. Since K is a knot, ¢ is odd, so at least one of the r; is an even number. We
assume without loss of generality that r1 = 2n for some integer n, since Kj,., ,,] is
equivalent to K|, ,,], by turning the standard diagram for the first knot upside down.

Let L = ki U ko be a 2-bridge link associated to the rational number p'/q" =
(2,79, —2]. See Figure 4, where r, = —6. Notice that after —1/n surgery on ki,
the other component ko becomes the knot K = K3y, ,,]- Therefore, doing v surgery on
K is the same as doing —1/n surgery on ki, then doing some +' surgery on k.

By considering the mirror image of K if necessary we may assume that ro < 0. If
ro is even, then [2,ry, —2] is a partial fraction decomposition with even coefficient, and

ro < —4. There is an allowable path in D(p'/q") with two channels, as shown in Figure
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5(a), where ro = —4. If r9 is odd, then p' /¢’ = [2,72+ 1,2], in which case D(p'/q’) also

has an allowable path with two channels. See Figure 5(b) for the case ro = —3.

] IR \) “
N ) .

Figure 4

(@) (b)

Figure 5

Let F be the essential branched surface in the link exterior associated to the above
allowable path in D(p’/q’), as constructed in [De2]. There is one solid torus component
V; in 83 —Int N (F) for each k;, containing k; as a central curve. From the construction
of F one can see that each channel contributes two cusps, one on each 9V;. Actually
from [De2, Figure 3.5] we see that the two cusps are around two points of L on a level
sphere with same orientation. Since each k; intersects the sphere at two points with
different orientations, those two cusps must be around different components of L. See
[Wu] for more details about surgery on 2-bridge links.

As the allowable path above has two channels, each V; has two meridional cusps.
Thus F remains an essential branched surface after surgery on L. Moreover, since the

surgery on kj has coefficient —1/n, which is non-integral, after surgery V; becomes

7



a solid torus whose meridional disk intersects the cusps at least four times. By [Br,

Corollary], the surgered manifold is not a small Seifert fibered space. [

Lemma 6. Let L = ki Uky be a 2-bridge link associated to the rational number p'/q' =
12,2, —2]. Let L(v1,7v2) be the manifold obtained by ~; surgery on k;. If vy = —1/n and

vo = —1, =2 or =3, then L(v1,72) is a small Seifert fibered space.

Proof. By definition L(0o,72) is the manifold obtained from S® by o surgery on k.
After —1 surgery on ks, the knot k1 becomes a trefoil knot in L(oco, —1) = S3. Since the
exterior of a torus knot is a Seifert fibered space with orbifold a disk with two cones,
it is easy to see that all but one surgeries yield Seifert fibered spaces, each having
an orbifold a disk with at most three cones. For this trefoil, the exceptional surgery
has coefficient —6, yielding a reducible manifold. Thus L(—1/n,—1) is a small Seifert
fibered space for any n.

After —2 surgery on ko, k1 becomes a knot in RP3 = L(oco, —2). The link L is drawn
in Figure 6(a), where the curve C'is a curve on dN (k3) of slope —2, so it bounds a disk
in L(co, —2). Thus a band sum of k1 and C' forms a knot k] isotopic to k1 in L(co, —2).
The link L' = k] Uk is shown in Figure 6(b). Using Kirby Calculus one can show that
L(—1/n,—2) = L'(—=2 — 1/n,—2). The exterior of kj in S3 is a Seifert fibered space
with orbifold a disk with two cones, in which k5 is a singular fiber of index 3. Thus
after —2 surgery on ks, the manifold L(oco, —2) — Int N (k]) is still Seifert fibered, with
orbifold a disk with two cones. The fiber slope on N (k}) is 6. It follows that all but
the 6 surgery on k} in L(co,—2) yield small Seifert fibered manifolds. In particular,
L(-1/n,—2) = L'(-2 — 1/n,—2) are small Seifert fibered manifolds for all n.

The proof for v = —3 is similar. One can show that the band sum of k; and
the curve C of slope —3 on ON(k2) is isotopic to the curve k} shown in Figure 6(c),
which is a (3,—2) torus knot. By the same argument as above one can show that

L(—-1/n,-3) = L(—3 — 1/n,—3) are small Seifert fibered manifolds for all n. [



ks kq Kk, k.l K, ; kl
C E } /g j >
&//
(a) (b) (©)
Figure 6

Corollary 7. Let K be a non-torus 2-bridge knot.

(1) K admits a small Seifert fibered surgery if and only if it is a twist knot;

(2) If K = Kp/q is a twist knot with p/q = [2n,+2], then K(v) is a small Seifert
fibered space for v = F1, F2 and F3.

(3) K(v) is not Seifert fibered unless 7y is an integer.

Proof. As noticed before, up to taking the mirror image we may assume that K = K,
where 1 < p < ¢, p is even, and ¢ is odd. Note that if p/qg = (¢ — 1)/q then K is a
(2, q) torus knot. Hence if K is a non-torus knot admitting some small Seifert fibered
surgery, then by Lemma 3 and Lemma 4 we must have p/q = [by, by] for some integers
b1, bs. Note that b; # +1, otherwise K is a torus knot. Therefore by Lemma 5 one of
the b; must be +£2. In other words, K is a twist knot.

Consider the case p/q = [b,2]. The proof for p/q = [b,—2] is similar. Since [b,2] =
[b—1,—2], we may further assume that b = 2n is even. Let L = k1 U ko be a 2-bridge
link associated to the rational number p’ /¢’ = [2,2, —2]. Notice that after —1/n surgery
on kq, the knot ks becomes the knot K = Ky, 5) in S® = L(—1/n,00). Therefore by
Lemma 6, K(v) = L(—1/n,~y) are small Seifert fibered spaces for vy = —1, —2 and —3.

Part (3) follows from [Br]. O

Lemma 8. Let K be a non-torus 2-bridge knot. Suppose K (vy) is toroidal. Then

(1) K = K, p,] for some by, by.



(2) If |b;| > 2 fori = 1,2, there is exactly one such y. When both b; are even, v = 0.
When by is odd and by is even, v = 2bs.

(3) If K = Kia,,9] and |n| > 1, K(v) is toroidal if and only if v = 0 or —4. For
K = Kg,,—21, v =0 or4.

(4) If K = Kpp 5, v=0, 4, or —4.

Proof. We refer the reader to [HT] for notations. If K (vy) is toroidal, there is an essential
punctured torus T in the knot exterior. By Theorem 1 of [HT], T is carried by some
Y[b1,...,bx], where [by,...,bg] is an expansion of p/q. By the proof of Theorem 2 of
[HT], we have 0 = 2 — 2g = n(2 — k). Therefore k¥ = 2. This proves (1). The rest
follows by determining all the possible expansions of type [by, ba] for p/q. The boundary
slopes of the surfaces can be calculated using Proposition 2 of [HT]. By the proof of
[Pr, Corollary 2.1], an incompressible punctured torus 7 in the exterior of a 2-bridge

knot will become an essential torus after surgery along the slope of 07. [

Lemma 9. If K is a nontorus 2-bridge knot, then K(v) has a geometric decomposition,

i.e. it 1s either toroidal, or Seifert fibered, or hyperbolic.

Proof. A p/q 2-bridge knot can be obtained by taking two arcs of slope p/q on the
“pillowcase”, then joining the ends with two trivial arcs. From this picture it is easy
to see that K is a strongly invertible knot, i.e, there is an involution ¢ of S® such that
¢(K) = K, and the fixed point set of ¢ is a circle S intersecting K at two points. ¢
restricts to an involution of E(K) = S3—Int N(K), which can be extended to an involu-
tion @ of the surgered manifold. ¢ has nonempty fixed point. Since K (vy) is irreducible
[HT], the result follows from Thurston’s orbifold geometrization theorem [Th3], which
says that if an irreducible, closed 3-manifold admits an orientable preserving periodic
map with nonempty fixed point set, then M has a geometric decomposition. See the

thesis of Q. Zhou [Zh] for a proof. [

Proof of Theorem 1. Part (5) is well known: If K is a (p, q) torus knot, then F(K) is
a Seifert fibered space, so all but one Dehn filling are Seifert fibered. The exceptional

one is the one with slope pg, producing a connected sum of two lens spaces. See [Mo].
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Part (4) is also well known: If K is the Figure 8 knot, by [Thl] K(v) is hyper-
bolic unless « is an integer between —4 and 4. Since K = Ko _9) = K[_32], by
Corollary 7 and Lemma 8 K(v) is toroidal for v = 0, —4, 4, and is Seifert fibered for
vy=-3,-2,—-1,1,2,3.

If K is not a torus knot or twist knot, then by Corollary 7 and Lemma 8, K (v) is
not Seifert fibered, and it is toroidal if and only if K and 7 are as described in (2). So
(1) and (2) follows from Lemma 9.

It remains to prove (3). Consider the knot K = K|, 5. Using Corollary 7, Lemmas
8 and 9, we need only show that K () is hyperbolic if v is an integer not between 0 and
—4. Since K = Ky, 9] is a hyperbolic knot [HT], and since K(0) in non hyperbolic,
the 2m-theorem of Gromov-Thurston (see [BH]) and Lemma 9 imply that K(vy) is
hyperbolic unless A(0,7) = |y| < 23.

Let L = kqUEy be the 2-bridge link associated to the rational number p/q = [2, 2, —2].
We use L(—,72) to denote the manifold obtained by removing k; and performing ~-
surgery on ky. As in the proof of Lemma 6, we have Kia,, 21(7) = L(—1/n,7).

Neumann and Reid [NR] proved that L(—,~) is hyperbolic unless v is an integer
between 0 and —4. Since L(oo,7) is a lens space, hence non hyperbolic, the 27-theorem
and Lemma 9 imply that if - is not between 0 and —4, then L(—1/n, ) is hyperbolic
unless A(oco, —1/n) = |n| < 23. Combining this with the above result, we see that
Ki2,21(7) is hyperbolic unless |n| < 23 and |y| < 23, so there are only finitely many
surgeries left to check. Finally, we use Jeff Weeks’ SnapPea program [We] to check this
finite set of surgeries. It has been verified that if [n| > 1 then Kj,, 5(7) is hyperbolic
unless v =0,—1, -2, -3, —4.

The knot K = Kjg, _g) is the mirror image of K[_s, 2}, 50 Kjg, _2)(7) is home-
omorphic to K[_s, (7). Therefore, if |n| > 1 then K(v) is hyperbolic unless v =
0,1,2,3,4. O
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