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Abstract. We will determine whether a given surgery on a 2-bridge knot is reducible,
toroidal, Seifert �bered, or hyperbolic.

In [Th1] Thurston showed that if K is a hyperbolic knot, then all but �nitely many

surgeries on K are hyperbolic. In particular, for the Figure 8 knot, it was shown

that exactly 9 nontrivial surgeries are non-hyperbolic. Let Kp=q be a 2-bridge knot

associated to the rational number p=q. When p � �1 mod q,K is a torus knot, on which

the surgeries are well understood. By [HT], all other 2-bridge knots are hyperbolic,

admitting no reducible surgeries. Moreover, Kp=q admits a toroidal surgery if and only

if p=q = [r1; r2] = 1=(r1 � 1=r2) for some integers r1; r2. See Lemma 8 below for a

complete list of all toroidal surgeries. The Geometrization Conjecture [Th2] asserts

that if a closed orientable 3-manifold is irreducible and atoroidal, then it is either a

hyperbolic manifold, or a Seifert �bered space whose orbifold is a 2-sphere with at most

three cone points, called a small Seifert �bered space. The conjecture has been proved

for two large classes of manifolds: the Haken manifolds [Th2], and those admitting an

orientation preserving periodic map with nonempty �xed point set [Th3,Ho,KOS,Zh].

It can be shown that surgery on a 2-bridge knot yields a manifold which admits such

a periodic map, so it has a geometric decomposition. Our main result will classify all

surgeries on 2-bridge knots according to whether they are reducible, toroidal, Seifert

�bered, or hyperbolic manifolds.
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We use [b1; : : : ; bn] to denote the partial fraction decomposition 1=(b1�1=(b2� : : :�

1=bn) : : : ). Recall that a 2-bridge knot K is a twist knot if it is equivalent to some Kp=q

with p=q = [b;�2] for some integer b. Since [b;�2] = [b� 1;�2], we may assume that

b is even. Let K(
) be the manifold obtained by 
 surgery on K. We always assume

that 
 6=1, that is, the surgery is nontrivial. (4) and (5) in the following theorem are

well known. They are included here for the sake of completeness.

Theorem 1. Let K be a 2-bridge knot.

(1) If K 6= K[b1;b2] for any b1; b2, then K(
) is hyperbolic for all 
.

(2) If K = K[b1;b2] with jb1j; jb2j > 2, then K(
) is hyperbolic for all but one 
,

which yields toroidal manifold. When both b1 and b2 are even, 
 = 0. If b1 is odd and

b2 is even, 
 = 2b2.

(3) If K = K[2n;�2] and jnj > 1, K(
) is hyperbolic for all but �ve 
: K(
) is

toroidal for 
 = 0;�4, and is Seifert �bered for 
 = �1;�2;�3.

(4) If K = K[2;�2] is the Figure 8 knot, K(
) is hyperbolic for all but nine 
: K(
)

is toroidal for 
 = 0; 4;�4, and is Seifert �bered for 
 = �1;�2;�3; 1; 2; 3.

(5) If K = K[b] is a (2; b) torus knot, K(
) is Seifert �bered unless 
 = 2b. K(2b)

is a reducible manifold.

The reader is referred to [GO] for de�nitions and basic properties concerning essential

branched surfaces and essential laminations, which play a central role in the proof

of the theorem. In [De1, De2] Delman constructed essential branched surfaces and

laminations in 2-bridge knot complements, which are persistent in the sense that they

remain essential after all nontrivial surgeries. Brittenham [Br] showed that if M is

a small Seifert �bered space containing an essential branched surface F , then each

component of M � IntN(F) is an I bundle over a compact surface G. This is a very

useful criteria in determining which manifolds are small Seifert �bered spaces. Before

proving the theorem, we need to review some results of [De1, De2].

For each rational number p=q, there is associated a diagram D(p=q), which is the

minimal subdiagram of the Hatcher-Thurston diagram [HT, Figure 4] that contains
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all minimal paths from 1=0 to p=q. See [HT, Figure 5] and [De1]. D(p=q) can be

constructed as follows. Let p=q = [a1; : : : ; ak] be a partial fraction decomposition of

p=q. To each ai is associated a \fan" Fai consisting of ai simplices, see Figure 1(a)

and 1(b) for the fans F4 and F�4. The edges labeled e1 are called initial edges, and

the ones labeled e2 are called terminal edges. The diagram D(p=q) can be constructed

by gluing the Fai together in such a way that the terminal edge of Fai is glued to the

initial edge of Fai+1 . Moreover, if aiai+1 < 0 then Fai and Fai+1 have one edge in

common, and if aiai+1 > 0 then they have a 2-simplex in common. See Figure 1(c) for

the diagram of [2;�2;�4; 2].

e e1 2

(a)

e1 e2

(b) (c)

0/1

1/0 1/21/1

1/3

2/5

Figure 1

To each vertex vi of D(p=q) is associated a rational number ri=si. It has one of

the three possible parities: odd/odd, odd/even, or even/odd, denoted by o=o, o=e, and

e=o, respectively. Note that the three vertices of any simplex in D(p=q) have mutually

di�erent parities.

We consider D(p=q) as a graph on a disk D, with all vertices on @D, containing @D

as a subgraph. The boundary of D forms two paths from the vertex 1=0 to the vertex

p=q. The one containing the vertex 0=1 is called the top path, and the one containing

the vertex 1=1 is called the bottom path. Edges on the top path are called top edges.

Similarly for bottom edges.

Let �1;�2 be two simplices in D(p=q) with an edge in common. Assume that the
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two vertices which are not on the common edge are of parity o=o. Then the arcs

indicated in Figure 2(a) and (b) are called channels. A path � in D(p=q) is a union of

arcs, each of which is either an edge of D(p=q) or a channel.

o/o o/o o/o o/o

Figure 2

Let � be a path in D(p=q). Let v be a vertex on �. Let e1; e2 be the edges of �

incident to v. Then there is a fan Fv in D(p=q) with e1; e2 as initial and terminal edges.

The number of simplices in Fv is called the corner number of v in �, denoted by c(v;�)

or simply c(v). A path � from 1=0 to p=q is an allowable path if it has at least one

channel, and c(v) � 2 for all v in �.

Now assume that K = Kp=q is a 2-bridge knot. Then q is an odd number. Recall

that Kp=q = Kp0=q if p0 � p�1 mod q, and K�p=q is the mirror image of Kp=q. We

may assume without loss of generality that p is even, and 1 < p < q. This is because

K(q�p)=q is equivalent to the mirror image of Kp=q, so the result of 
 surgery on the

�rst is the same as that of �
 surgery on the second. Note that q � p and p have

di�erent parity, since q is odd. The following result is due to Delman. See [De1] and

[De2, Proposition 3.1].

Lemma 2. Given an allowable path � of D(p=q), there is an essential branched surface

F in S3 �K which remains essential after all nontrivial surgeries on K. �

Lemma 3. If there is an allowable path � in D(p=q) such that c(v) > 2 for some

vertex v in �, then K(
) is not a small Seifert �bered space for any 
.
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Proof. It was shown in [Br, Corollary] that if F is an essential branched surface in a

small Seifert �bered space M , then each component of M � IntN(F) is an I-bundle

over a compact surface G, such that the vertical surface @vN(F) (also called cusps) is

the I-bundle over @G. It has been shown in [De1] that for each vertex v of � there is

a component Wv of S3 � IntN(F) such that Wv is a solid torus whose meridian disk

intersects the cusps c(v) times. In particular, if c(v) > 2 then Wv is not an I bundle

as above. Since F is an essential branched surface in K(
), it follows that K(
) is not

a small Seifert �bered space. �

Lemma 4. Suppose p is even, q is odd, and 1 < p < q�1. If p=q does not have partial

fraction decomposition of type [r1; r2], then D(p=q) has an allowable path � such that

some vertex v on � has c(v) > 2.

Proof. Let [a1; : : : ; an] be the partial fraction decomposition of p=q such that all ai

are even. Then a1 � 2. If ai = 2 for all i, then p=q = (q � 1)=q, contradicting our

assumption. Thus either some ai < 0, or some ai > 4. We separate the two cases.

CASE 1. Some ai < 0.

Let ai be the �rst negative number. Then ai�1 > 0, so there is a sign change. By

[De2] there is a channel �0 in Fai�1 [ Fai starting at a bottom edge and ending at a

top edge, where Fai is the fan in D(p=q) corresponding to ai. Let �1 be the part of the

bottom path of D(p=q) from the vertex 1=0 to the initial point of �0, and let �2 be the

part of the top path from the end point of �0 to the vertex p=q. Then � = �1[�0[�2

is an allowable path in D(p=q). We need to show that if c(v) = 2 for all vertices v on

this path, then p=q = [r1; r2] for some r1; r2.

Consider the vertices on �1. Since c(vi) = 2 for all vi, each vertex vi is incident

to exactly one non boundary edge ei of D(p=q), which must have the other end on

a vertex v0i in the top path. If some of these v0i are di�erent, then since all faces

of D(p=q) are triangles, it is clear that some vj on �1 would have at least two non

boundary edges, which would be a contradiction. Similarly, each vertex on �2 has a

unique non boundary edge, leading to a common vertex on the bottom path, so the
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diagram D(p=q) looks exactly as in Figure 3(a). It is the union of two fans Fr1 and

Fr2 with r1 > 0, and r2 < 0. Therefore, p=q = [r1; r2].

CASE 2. Some ai � 4.

In this case there is a channel �0 with both ends on the bottom path. Construct

an allowable path � = �1 [ �0 [ �2 with �1; �2 in the bottom path. Similar to Case

1, it can be shown that each vertex on �i has a unique non boundary edge leading to

a common vertex v0i on the top path, so D(p=q) looks like that in Figure 3(b). In this

case p=q = [r1; r2], with both ri > 0. �

...

...

(a) (b)

... ...

Figure 3

Lemma 5. Let K = Kp=q be a two bridge knot such that p=q = [r1; r2], and jrij � 3

for i = 1; 2. Then no surgery on K is a small Seifert �bered space.

Proof. Since K is a knot, q is odd, so at least one of the ri is an even number. We

assume without loss of generality that r1 = 2n for some integer n, since K[r1;r2] is

equivalent to K[r2;r1], by turning the standard diagram for the �rst knot upside down.

Let L = k1 [ k2 be a 2-bridge link associated to the rational number p0=q0 =

[2; r2;�2]. See Figure 4, where r2 = �6. Notice that after �1=n surgery on k1,

the other component k2 becomes the knot K = K[2n;r2]. Therefore, doing 
 surgery on

K is the same as doing �1=n surgery on k1, then doing some 
0 surgery on k2.

By considering the mirror image of K if necessary we may assume that r2 < 0. If

r2 is even, then [2; r2;�2] is a partial fraction decomposition with even coe�cient, and

r2 � �4. There is an allowable path in D(p0=q0) with two channels, as shown in Figure
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5(a), where r2 = �4. If r2 is odd, then p
0=q0 = [2; r2+1; 2], in which case D(p0=q0) also

has an allowable path with two channels. See Figure 5(b) for the case r2 = �3.

k

k

1

2

Figure 4

(a) (b)

Figure 5

Let F be the essential branched surface in the link exterior associated to the above

allowable path in D(p0=q0), as constructed in [De2]. There is one solid torus component

Vi in S
3� IntN(F) for each ki, containing ki as a central curve. From the construction

of F one can see that each channel contributes two cusps, one on each @Vi. Actually

from [De2, Figure 3.5] we see that the two cusps are around two points of L on a level

sphere with same orientation. Since each ki intersects the sphere at two points with

di�erent orientations, those two cusps must be around di�erent components of L. See

[Wu] for more details about surgery on 2-bridge links.

As the allowable path above has two channels, each Vi has two meridional cusps.

Thus F remains an essential branched surface after surgery on L. Moreover, since the

surgery on k1 has coe�cient �1=n, which is non-integral, after surgery V1 becomes
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a solid torus whose meridional disk intersects the cusps at least four times. By [Br,

Corollary], the surgered manifold is not a small Seifert �bered space. �

Lemma 6. Let L = k1[k2 be a 2-bridge link associated to the rational number p0=q0 =

[2; 2;�2]. Let L(
1; 
2) be the manifold obtained by 
i surgery on ki. If 
1 = �1=n and


2 = �1, �2 or �3, then L(
1; 
2) is a small Seifert �bered space.

Proof. By de�nition L(1; 
2) is the manifold obtained from S3 by 
2 surgery on k2.

After �1 surgery on k2, the knot k1 becomes a trefoil knot in L(1;�1) = S3. Since the

exterior of a torus knot is a Seifert �bered space with orbifold a disk with two cones,

it is easy to see that all but one surgeries yield Seifert �bered spaces, each having

an orbifold a disk with at most three cones. For this trefoil, the exceptional surgery

has coe�cient �6, yielding a reducible manifold. Thus L(�1=n;�1) is a small Seifert

�bered space for any n.

After �2 surgery on k2, k1 becomes a knot in RP 3 = L(1;�2). The link L is drawn

in Figure 6(a), where the curve C is a curve on @N(k2) of slope �2, so it bounds a disk

in L(1;�2). Thus a band sum of k1 and C forms a knot k01 isotopic to k1 in L(1;�2).

The link L0 = k01[k2 is shown in Figure 6(b). Using Kirby Calculus one can show that

L(�1=n;�2) = L0(�2 � 1=n;�2). The exterior of k01 in S3 is a Seifert �bered space

with orbifold a disk with two cones, in which k2 is a singular �ber of index 3. Thus

after �2 surgery on k2, the manifold L(1;�2)� IntN(k01) is still Seifert �bered, with

orbifold a disk with two cones. The �ber slope on @N(k01) is 6. It follows that all but

the 6 surgery on k01 in L(1;�2) yield small Seifert �bered manifolds. In particular,

L(�1=n;�2) = L0(�2� 1=n;�2) are small Seifert �bered manifolds for all n.

The proof for 
2 = �3 is similar. One can show that the band sum of k1 and

the curve C of slope �3 on @N(k2) is isotopic to the curve k01 shown in Figure 6(c),

which is a (3;�2) torus knot. By the same argument as above one can show that

L(�1=n;�3) = L(�3� 1=n;�3) are small Seifert �bered manifolds for all n. �
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Figure 6

Corollary 7. Let K be a non-torus 2-bridge knot.

(1) K admits a small Seifert �bered surgery if and only if it is a twist knot;

(2) If K = Kp=q is a twist knot with p=q = [2n;�2], then K(
) is a small Seifert

�bered space for 
 = �1, �2 and �3.

(3) K(
) is not Seifert �bered unless 
 is an integer.

Proof. As noticed before, up to taking the mirror image we may assume thatK = Kp=q,

where 1 < p < q, p is even, and q is odd. Note that if p=q = (q � 1)=q then K is a

(2; q) torus knot. Hence if K is a non-torus knot admitting some small Seifert �bered

surgery, then by Lemma 3 and Lemma 4 we must have p=q = [b1; b2] for some integers

b1; b2. Note that bi 6= �1, otherwise K is a torus knot. Therefore by Lemma 5 one of

the bi must be �2. In other words, K is a twist knot.

Consider the case p=q = [b; 2]. The proof for p=q = [b;�2] is similar. Since [b; 2] =

[b� 1;�2], we may further assume that b = 2n is even. Let L = k1 [ k2 be a 2-bridge

link associated to the rational number p0=q0 = [2; 2;�2]. Notice that after �1=n surgery

on k1, the knot k2 becomes the knot K = K[b;2] in S3 = L(�1=n;1). Therefore by

Lemma 6, K(
) = L(�1=n; 
) are small Seifert �bered spaces for 
 = �1, �2 and �3.

Part (3) follows from [Br]. �

Lemma 8. Let K be a non-torus 2-bridge knot. Suppose K(
) is toroidal. Then

(1) K = K[b1;b2] for some b1; b2.
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(2) If jbij > 2 for i = 1; 2, there is exactly one such 
. When both bi are even, 
 = 0.

When b1 is odd and b2 is even, 
 = 2b2.

(3) If K = K[2n;2] and jnj > 1, K(
) is toroidal if and only if 
 = 0 or �4. For

K = K[2n;�2], 
 = 0 or 4.

(4) If K = K[2;�2], 
 = 0, 4, or �4.

Proof. We refer the reader to [HT] for notations. IfK(
) is toroidal, there is an essential

punctured torus T in the knot exterior. By Theorem 1 of [HT], T is carried by some

�[b1; : : : ; bk], where [b1; : : : ; bk] is an expansion of p=q. By the proof of Theorem 2 of

[HT], we have 0 = 2 � 2g = n(2 � k). Therefore k = 2. This proves (1). The rest

follows by determining all the possible expansions of type [b1; b2] for p=q. The boundary

slopes of the surfaces can be calculated using Proposition 2 of [HT]. By the proof of

[Pr, Corollary 2.1], an incompressible punctured torus T in the exterior of a 2-bridge

knot will become an essential torus after surgery along the slope of @T . �

Lemma 9. If K is a nontorus 2-bridge knot, then K(
) has a geometric decomposition,

i.e. it is either toroidal, or Seifert �bered, or hyperbolic.

Proof. A p=q 2-bridge knot can be obtained by taking two arcs of slope p=q on the

\pillowcase", then joining the ends with two trivial arcs. From this picture it is easy

to see that K is a strongly invertible knot, i.e, there is an involution ' of S3 such that

'(K) = K, and the �xed point set of ' is a circle S intersecting K at two points. '

restricts to an involution of E(K) = S3�IntN(K), which can be extended to an involu-

tion b' of the surgered manifold. b' has nonempty �xed point. Since K(
) is irreducible

[HT], the result follows from Thurston's orbifold geometrization theorem [Th3], which

says that if an irreducible, closed 3-manifold admits an orientable preserving periodic

map with nonempty �xed point set, then M has a geometric decomposition. See the

thesis of Q. Zhou [Zh] for a proof. �

Proof of Theorem 1. Part (5) is well known: If K is a (p; q) torus knot, then E(K) is

a Seifert �bered space, so all but one Dehn �lling are Seifert �bered. The exceptional

one is the one with slope pq, producing a connected sum of two lens spaces. See [Mo].
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Part (4) is also well known: If K is the Figure 8 knot, by [Th1] K(
) is hyper-

bolic unless 
 is an integer between �4 and 4. Since K = K[2;�2] = K[�2;2], by

Corollary 7 and Lemma 8 K(
) is toroidal for 
 = 0;�4; 4, and is Seifert �bered for


 = �3;�2;�1; 1; 2; 3.

If K is not a torus knot or twist knot, then by Corollary 7 and Lemma 8, K(
) is

not Seifert �bered, and it is toroidal if and only if K and 
 are as described in (2). So

(1) and (2) follows from Lemma 9.

It remains to prove (3). Consider the knot K = K[2n;2]. Using Corollary 7, Lemmas

8 and 9, we need only show that K(
) is hyperbolic if 
 is an integer not between 0 and

�4. Since K = K[2n;2] is a hyperbolic knot [HT], and since K(0) in non hyperbolic,

the 2�-theorem of Gromov-Thurston (see [BH]) and Lemma 9 imply that K(
) is

hyperbolic unless �(0; 
) = j
j < 23.

Let L = k1[k2 be the 2-bridge link associated to the rational number p=q = [2; 2;�2].

We use L(�; 
2) to denote the manifold obtained by removing k1 and performing 
2

surgery on k2. As in the proof of Lemma 6, we have K[2n;2](
) = L(�1=n; 
).

Neumann and Reid [NR] proved that L(�; 
) is hyperbolic unless 
 is an integer

between 0 and �4. Since L(1; 
) is a lens space, hence non hyperbolic, the 2�-theorem

and Lemma 9 imply that if 
 is not between 0 and �4, then L(�1=n; 
) is hyperbolic

unless �(1;�1=n) = jnj < 23. Combining this with the above result, we see that

K[2n;2](
) is hyperbolic unless jnj < 23 and j
j < 23, so there are only �nitely many

surgeries left to check. Finally, we use Je� Weeks' SnapPea program [We] to check this

�nite set of surgeries. It has been veri�ed that if jnj > 1 then K[2n;2](
) is hyperbolic

unless 
 = 0;�1;�2;�3;�4.

The knot K = K[2n;�2] is the mirror image of K[�2n;2], so K[2n;�2](
) is home-

omorphic to K[�2n;2](
). Therefore, if jnj > 1 then K(
) is hyperbolic unless 
 =

0; 1; 2; 3; 4. �
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