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ABSTRACT

We show how to build tangles T in a 3-ball with the property that any knot obtained

by tangle sum with T has a persistent lamination in its exterior, and therefore has

property P. The construction is based on an example of a persistent lamination in the

exterior of the twist knot 61, due to Ulrich Oertel. We also show how the construction

can be generalized to n-string tangles.
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0. Introduction

Essential laminations have proved very useful in understanding the topology of

knots in the 3-sphere. Constructions of essential laminations in knot exteriors have

allowed us to see that non-trivial surgery on non-torus alternating knots [DR], and

on most algebraic knots [Wu] yield manifolds with universal cover R3, for example.

This can be thought of as a (very) strong form of Property P for these knots. They

can also provide a means of detecting the underlying geometric structure of the

3-manifolds obtained by surgery on a knot [Br1],[Br2],[BW].

In this paper we construct persistent laminations for knots, that is, essential

laminations in the exterior of the knot, which remain essential after any non-trivial

Dehn �lling. Our starting point is a particularly simple example of such an essential

lamination L, found by Ulrich Oertel [Oe] in the complement of a twist knot (the

knot 61 in Rolfsen's knot tables [Ro]), in connection with his work on laminations

with a transverse a�ne structure. What we show here is that this lamination can

be associated to a rather simple tangle T0. By this we mean two things: (1) the

lamination L lives in the complement of the tangle T0 in the 3-ball B3; (2) if we

sum T0 with any other tangle T to obtain a knot K in the 3-sphere S3, then L

is persistent for K. We call such a tangle persistently laminar. Being persisently

laminar immediately implies, for example that every knotK obtained by tangle sum

with T0 has Property P. We also show that the construction of the lamination L



can be generalized to provide many more examples of persistently laminar tangles.

1. The lamination

Oertel's construction of the lamination L begins with the branched surface B,

depicted in Figure 1a, embedded in the complement of the 61 knot K0. We have

removed the knot K0 in Figure 1b, to give a better view of the branched surface.

This branched surface can be thought of as a once-punctured torus (i.e, a disk with

a 1-handle attached), with its boundary glued to a curve running over the 1-handle,

to create a single, embedded branch curve for B (as well as a second tube for the

knot to run through); see Figure 1c.
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Figure 2 provides a magni�ed picture of the process of gluing at the base of the

1-handle, to make it easier to see how the second tube is created.

Note that N0 = S3nintN(B) is a genus-2 handlebody; this is most easily seen

from Figures 1b and 2. By `�lling in' the two tubes that the knot K0 runs through

(one of which is created when we glue the boundary of the punctured torus to 


to create B), which we can think of as gluing two 2-disks D1, D2 to B, we can see

that N(B[D1[D2) is a 3-ball, i.e, S
3nintN(B[D1[D2) is a 3-ball. N0 is therefore

a handlebody.

Figure 2

Next we show how to �nd a knot in the exterior of B so that B will be essential

in the exterior of the knot. Our condition comes from the fact that our knot K0

above meets each of the disks D1; D2 in one point.

Theorem. Let K be a knot in N0 = S3nN(B) meeting each of the disks D1; D2

in one point. Then B is an essential branched surface in M = S3nint(N(K)).

Proof: For B to be essential we need to know 6 things:

(1) B carries a lamination L with full support.

This is immediate, since B has no triple points; the branch curve 
 does not intersect

itself. If we cut B open along 
 (see Figure 1d), we get a surface with boundary, F .

By taking a Cantors set's-worth of copies of F , embedded transverse to the �bers of

N(B), we can glue these surfaces together where the three copies of 
 meet (since

the concatenation of two Cantor sets is order isomorphic to a Cantor set) to create

a lamination L carried with full support by B.

(2) B does not carry a 2-sphere, and B has no disks of contact.

This follows because B has only one sector, i.e., Bn
 is connected. The sector

is in fact a twice-punctured 2-disk F (it is, after all, a once-punctured torus cut

open along a non-separating curve); see Figure 1d. Any surface carried by B would

consist of �nite number a of parallel copies of F , glued together where the three

boundary components of F come together at 
. When these three sheets come

together we get a consistency condition to determine if we can glue the boundary



components together to get a closed surface (Figure 3). In this case the condition is

a + a = a, implying a = 0. So no such surface exists. A disk of contact is similar; it

is a 2-disk carried by B, whose boundary lives in the vertical boundary @vN(B) of

B. This must again be built by gluing copies of F together, except this time, after

gluing, a boundary component is left free. This gives the consistency condition a +

a +1 = a, implying a =�1, which is absurd. So there are also no disks of contact.

In point of fact, we have shown that B carries no closed surface, and has no

compact surfaces of contact.
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Figure 3

(3) B does not carry a compressible torus.

This follows from the above, since B does not carry a closed surface.

(4) M0 = Mnint(N(B)) does not have any monogons.

This is also immediate, because B is transversely orientable; there is a vector �eld

(in M) everywhere transverse to the tangent planes of B. The arc in the boundary

of a monogon which meets @h(N(B)) is a transverse orientation-reversing loop.

(5) M0 is irreducible.

Suppose S is a reducing sphere forM0. Since N0 is a handlebody, S bounds a 3-ball

B3 in N0. Since this 3-ball cannot live inM0, we must haveK�B3. But this implies

that K is null-homotopic in N0, hence homologically trivial. But K intersects D1,

for example, exactly once, and so its homology class has non-trivial intersection

number with the class of D1, so is non-trivial (Figure 4). So the reducing sphere

cannot exist.

K

D1

Figure 4

(6) The horizontal boundary @hN(B) of B is incompressible in M0.

Again the idea is to use the fact that K pierces the disks Di in one point each. The

point is that there are very few compressing disks for @hN(B) in the handledbody



N0 to begin with, and the fact that we are dealing with a knot means that all of

them must intersect K.

Suppose D is a compressing disk for @hN(B) in M0. Then in particular, it is

a compressing disk for @hN(B) in N0. The key to the argument is the fact that


 itself bounds a compressing disk, call it D0. because @D\
 = @D\@D0 = ;, we

can, by a disk-swapping argument, make D and D0 disjoint. Now N0nD0 consists

of two solid tori, each with a fat point (namely D0) removed from their boundaries.

D can therefore be thought of as a compressing disk for a solid torus which has a

point removed from its boundary. It is therefore isotopic either to a meridian disk

of the solid torus (and therefore, back in N0, is isotopic to one of the disks D1 or

D2), if @D is essential in the boundary of the solid torus, or is boundary parallel,

i,e, is parallel to a disk in the boundary of the solid torus, with the removed point

in its interior; see Figure 5a. Back in N0 , this second disk is parallel to D0.

Figure 5

But both of these possibilities are absurd; in the �rst case D, which misses K, is

isotopic, rel boundary (if we wish - the original isotopy moved @D around in @N0),

to a disk which hits K exactly once, contradicting the invariance of intersection

number for homology classes (Figure 5b). In the second case D separates N0, yet

K, which is connected, has non-trivial intersection with each piece (Figure 5c).

Therefore, no compressing disk for @hN(B) in M0 exists.

Consequently, all properties of essentiality are satis�ed, so B is an essential

branched surface, and L is an esential lamination, in S3nint(N(K)).

2. The tangle T0

N(B[D1[D2) is a 3-ball B0, which the our original twist knot K0, and each of

the knots K, intersects in a pair of arcs, namely the two cores of the tubes that the

disks cap o�. In other words, each K meets this 3-ball in the same tangle T0. But



we have not yet identi�ed this tangle. To see what it is, imagine stretching the two

arcs in the 3-ball to �ll the two tubes of S3nint(N(B)); we arrive at a picture as in

Figure 6a (we have also included the branch curve 
 for reference). The key point

here is that the arc which, in this picture, crosses over the other, comes out of the

3-ball in back. Pulling it around front adds extra half-twists to the tangle, so that

we end up with the tangle in Figure 6c. It is the sum of two rational tangles, the

1/3 tangle and the �1/3 tangle.

Our original knot K0 is obtained from this tangle by tangle sum with a rational

tangle; see Figure 6d.
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3. Persistence

The analysis of Section 1 above shows that the lamination L is essential in the

complement of any knot K obtained by tangle sum of T0 with any other tangle T .

We now show:

Proposition. L is persistent for the knot K; it remains essential in any manifold

obtained by non-trivial Dehn �lling along K.

Proof: For basic concepts on Dehn �lling and Dehn surgery, the reader is

referred to [Ro].

To show that L is essential in the manifold K(r) obtained by r-Dehn-�lling

along K, for r 6=1/0, we will verify the six properties (1)-(6) above, in this new



setting. Once again, the �rst four of these properties require no extra proof, since

N(B) has not changed; only where it is embedded has. So we need only show that

K(r)nintN(B) = Mr is irreducible, and @hN(B) is incompressible in Mr.

We can think of Mr as the result of r-Dehn-�lling on K in the genus-2 handle-

body N0. Both of our proofs will rely on the fact that N0nint(N(K)) contains two

embedded annuli Ai =Dinint(N(K)), i=1,2, each with one component on @hN(B)

and the other a meridional loop on @N(K).

To show that Mr is irreducible, suppose it is not. Then there is a 2-sphere S

in Mr which does not bound a ball in Mr. Choose such a sphere which intersects

(transversely) the (image of the) knot K in the fewest number of points. It is then

standard that Snint(N(K)) = S0 is an incompressible and @-incompressible planar

surface in N0nint(N(K)) = M0. The curves S0/ap@N(K) are parallel curves of

slope r.

Look at S0\Ai; it consists of circles and arcs. Trivial circles of intersection can

be removed by isotopy, since S0 is incompressible. The arcs of intersection cannot

meet the boundary component of Ai coming from @N0, since S misses @Mr. These

arcs of intersection are therefore boundary parallel, and so can also be removed by

isotopy, since S0 is @-incompressible. After these isotopies, if @S0 6= ;, @S0�@N(K)

misses a meridional loop, and hence consists of meridional loops. So r = 1/0, a

contradiction.

Therefore @S0=;, i.i., S0 = S. But since N0 is irreducible, S bounds a 3-ball in

N0. This 3-ball must intersect, hence contain, K, since otherwise S bounds a 3-ball

in Mr. But this implies that K is null-homologous in N0, which is impossible since

it intersects a compressing disk D1 of @N0 exactly once. So the reducing sphere

cannot exist; Mr is irreducible.

To prove incompressibility of @h, we again appeal to the two disjoint annuli Ai

in M0, joining meridional loops in @N(K) to loops in @hN(B). The two loops

in @hN(B) are obviously not homotopic to one another on @hN(B); they lie in

di�erent components. We have already seen above that @hN(B) is incompressible

in N0nint(N(K)). It then follows from Theorem 4 of [Me] that @hN(B) will remain

incompressible in any manifold obtained by non-trivial (i.e., non-meridional) Dehn

�lling along K (in N0).

Therefore, all of the properties of essentiality for B (and hence for L) are satis�ed

in any manifold obtained by non-trivial Dehn �lling along any of the knots K. So

K is persistently laminar.

4. Generalizations

The existence of a persistent lamination in the complement of knots K obtained

from T0 duplicates previous work. If T is a rational tangle, then K is a Montesinos

knot, and for such tangles Delman [De] has constructed persistent laminations for

the resulting knots. On the other hand, if T is an non-split tangle, then Wu [Wu]

has shown that K admits a persistent lamination. These two results have very



powerful generalizations, as well. The intersection of the complements of these two

classes of tangles is the collection of split, non-rational, tangles, and so the resulting

knots are all connected sums with a square knot. One of the swallow-follow tori for

each knot will then remain incompressible under all non-trivial Dehn �llings.

The technique for building the branched surface B that we have used here can,

however, be easily extended to more than one tube; see Figure 7 for the case n=2.

We can then string arcs through the tubes of Bn, to create a tangle of 2n arcs in a

3-ball. S3nint(N(Bn)) = Nn is again a handlebody (it is a 3-ball with 2n 1-handles

attached,) and the branch curve 
 separates the 1-handles into two collections of

n each (Figure 8). In this case however, we cannot always add arcs in the central

3-ball to create a knot in any way we choose, and still expect Bn to be essential; an

arc running (parallel to @Nn) from arcs on the same side of 
 , for example, has a

(parallel) @-compressing disk around it (see Figure 8b).

Figure 7

Figure 8

However, incompressibility of the horizontal boundary @hN(Bn) in Nn is the

only obstruction to the essentiality of Bn, as well as remaining essential under any

non-trivial Dehn surgery. The �rst four conditions on essentiality follow the exact

same line as in our original case. We also still have the meridional annuli which allow

us to verify that irreducibility and incompressibility of @hN(Bn) will be inherited

under any non-trivial Dehn �lling. In some sense, it turns out, the phenomenon

described above is also the only way to prevent incompressibility, as well.

We can push compressing disks o� of the tubes, by pushing them o� of the merid-



ional annuli; see Figure 9. Trivial circles of intersection with Ai can be removed

by isotopy, since Nn (and therefore NnnK) is irreducible, and then we may surger

along arcs of intersection to create two disks, at least one of which has boundary

non-trivial in @hN(B), giving us a new compressing disk with fewer intersections

with Ai. Finally, we cannot have any circles of intersection which are essential in

Ai, since surgering along the innermost one (using the disk in Di that it bounds,

which meets K once) would produce a disk and a 2-sphere (in S3) each intersecting

K exactly once. But a sphere in S3 cannot meet a knot only once.

K

Figure 9

Our compressing diskD then lies in the central 3-ball piece B3 of S3nint(N(Bn)).

Again, we can assume (by disk-swapping) that D misses the obvious compressing

disk D0 that the branch curve 
 bounds. D then splits B3 into two 3-balls B3

1
and

B3

2
; one of them, B3

1
say, misses D0. We must then have K\B3

1
6= ;; otherwise, D

can be isotoped, rel boundary, into @hN(Bn), since @B
3

1
misses K, hence misses the

subdisks of @B3 which the 1-handles of Nn are attached to (see Figure 10).

Therefore K\B3

1
consists of some non-zero number of components of the 2n-

strand tangle K\B3. These arcs are disjoint from B3

2
, and so are disjoint from D0,

and so each joins endpoints of core arcs of 1-handles which are on the same side

(i.e., the D-side) of 
.

D'

D

K

D

Figure 10

Therefore, one way to ensure that the branched surface Bn is essential in the

complement of K, and remains esential under all non-trivial Dehn �llings, is to

insist that all of the arcs we use to build K travel from one side of 
 to the other,

as in Figure 8a. This is still a vast number of knots, all of which admit a persistent

lamination. Even more, we can allow ourselves to connect the ends of this 2n-strand

tangle as above to create links, as well. Since each component of the link must visit



both sides of 
, each component comes equipped with two of the meridional annuli

Ai, whose boundary components are on di�erent components of @hN(B). Therefore,

non-trivial Dehn �lling on each component of the link (what is sometimes called a

complete Dehn �lling) yields a manifold in which our lamination remains essential.

Note that, with our original tangle T0, the condition that the arcs of the tangle T

travel from one side of 
 to the other is precisely the condition that the resulting

link is in fact a knot. So this new condition is a natural extension.

Figure 11

It is not hard to see that the tangle of Figure 7 (and its generalizations with

more tubes) can be isotoped to an alternating diagram. Adding more arcs to the

tangle (i.e., adding more tubes to Bn) simply amounts to grafting on an additional

fundamental piece to the tangle, shown in the dotted rectangle in Figure 11. The

condition above then amounts to requiring that the complementary 2n-strand tangle

join black-dotted ends to white-dotted ends. Joining together all but two pairs of

ends produces an ordinary tangle. Note that each strand of the tangle must have

been built from an odd number of our original strands, in order for its ends to lie

on the same side of the compressing disk D. Since our lamination remains essential

and persistent no matter how this tangle is completed to a knot, these tangles are

persistently laminar.

5. Still more generalizations

D

D

1

2

Figure 12a Figure 12b

Ramin Naimi has pointed out that the branched surface B which we began with



can be drawn in a di�erent (and ultimately more useful) way; see Figure 12. In

this form it is easy to see all of the components of the construction which we have

exploited; the compressing disk bounded by the branch curve 
, the compressing

disks for the two 1-handles, and the tangle T0 built from the core arcs of the 1-

handles.

Figure 13

Our more general branched surfacesBn have similarly simple pictures; see Figure

13a. In this form, however, it is also easy to see that there are di�erent choices of

how to write S3nintBn=Nn as a 3-ball B3 (containing the branch curve 
) with

1-handles attached, by choosing di�erent compressing disks for @Nnn
; see Figure

13b. We can take the core arcs of these compressing disks, and think of them as

a 2n-strand tangle in the complementary 3-ball S3nB3. Structurally, these tangles

have the exact same properties which we used in Section 4 to show that Bn is

essential in the complement of any knot or link obtained by gluing on a tangle in

B3 all of whose strands cross the disk D bounded by 
. Therefore, we can obtain

new examples of persistently laminar tangles by choosing sets of compressing disks

for the two genus-n handlebodies of NnjD, and taking the core arcs of the disks.

We give a further example in Figure 14.

Figure 14



We can list of the properties of our branched surfaces Bn which we have used

in our proofs; this gives us a recipe for �nding persistently laminar tangles. We

needed a transversely orientable branched surface B in S3 having one branched

curve 
, with no triple points, so that Bn
 is connected. We also require that 


bounds a disk D which splits S3nintN(B) into two genus-n handlebodies (note that

the two handlebodies must have the same genera); in particular, S3nintN(B) is a

handlebody. Choosing compressing disks for each handlebody and taking their core

arcs gives us a 2n-strand tangle which we can string together as above to create

persistently laminar tangles. In Figure 15 we provide an example, using this recipe.

Figure 15

6. Concluding remarks

The tangles we have described here come equipped with a lamination in their

tangle space (the 3-ball with the arcs of the tangle removed), which remains essential

after non-trivial surgery on any knot constructed from the tangle. This is what

we have called persistently laminar. One could weaken this de�nition, without

losing its essential strength, by requiring instead that for every knot obtained from

the tangle, there is a lamination which remains essential under non-trival Dehn

�lling. The work of Delman [De] and Wu [Wu] then demonstrate that many other

tangles are persistently laminar in this sense; for example, the sum of two rational

tangles whose associated rational numbers have denomentators at least 3 and have

di�erent signs (such as, for example, our tangle T0) [De], or the sum of two atoroidal

tangles [Wu]. Most algebraic tangles (see [Wu]) are also persistently laminar, in this

weaker sense. The technique of the previous paragraph can easily provide examples

of persistently laminar (alternating) tangles which cannot be decomposed (non-

trivially) as the sum of two tangles, however, making them disjoint from these

collections of tangles.

There are, of course, many tangles which are not persistently laminar; any tan-



gle which can be summed to give a knot admitting a �nite or reducible surgery,

for example, cannot be persistently laminar, because the surgery manifold is not

laminar. So, for example, no rational tangle is persistently laminar; each can be

summed with another rational tangle to produce a (2,q)-torus knot. Other, more

sporadic, examples can easily be given.

In this paper we have worked, in some sense, backwards, by building a lamination

and then �nding the tangle space which it should live in. A far more di�cult (and

so correspondingly rewarding) approach is to try to determine if a given tangle is

persistently laminar, in either sense. Wu, for example, suggests the tangle of Figure

16 as an example; it is, in some sense, the smallest non-algebraic tangle. We do not

know whether or not it is persistently laminar. No knot obtained from it by tangle

sum with another tangle is known to fail to be persistently laminar.

Figure 16

The laminations we have worked with are also in some sense the `simplest'

laminations one could build; their branched surfacees have a single branch curve

with no triple points. It is remarkable how many knots these very simple laminations

are persistent for; are there other constructions which are similarly powerful?
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