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ABSTRACT
We show how essential laminations can be used to provide an improvement on (some

of) the results of the 2�-Theorem; at most 20 Dehn �llings on a hyperbolic 3-manifold
with boundary a torus T can yield a reducible manifold, �nite �1 manifold, or exceptional
Seifert-�bered space. Recent work of Wu allows us to add toroidal manifolds to this list,
as well.
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Introduction and outline

Much recent research in 3-manifold topology has been motivated by the con-

jecture that `most' 3-manifolds are hyperbolic, i.e., their interiors admit a metric

of constant curvature �1. One of the largest single pieces of evidence supporting

this view is the so-called 2�-theorem of Gromov and Thurston (see [BH]), which

essentially says that Dehn �lling along a curve 
 in the boundary T of a complete

hyperbolic 3-manifold M of �nite volume, which is represented by a geodesic of

length greater than 2�, yields a manifold M(
) which admits a metric of (variable)

negative curvature - see below for a more precise statement. Current e�orts also

lend increasing weight to the conjecture that 3-manifolds with a negative curvature

metric are hyperbolic.

A (closed) 3-manifold N can fail to be hyperbolic in one of several ways: it

can have �nite fundamental group, it can contain an essential 2-sphere (i.e., N

is reducible), it can contain an essential (embedded) torus, or it can be what is

known as an exceptional Seifert-�bered space: N is foliated by circles, has in�nite

fundamental group, but contains no essential torus. In this paper, we focus mainly

on this last possibility. Speci�cally, we show:

Theorem:. Given a hyperbolic 3-manifold M with boundary a torus T , at most

20 Dehn �llings along T can yield manifolds which are reducible or have �nite �1
or are exceptional Seifert-�bered spaces.



This result follows from three main facts. Bleiler and Hodgson [BH], following

ideas of Adams [Ad1], have shown that the 2�-theorem implies:

Theorem [BH]. : At most 24 Dehn �llings on a hyperbolic 3-manifold do not

admit negatively-curved metrics.

This is because 24 is the largest number of primitive points in a lattice, inside of

a circle of radius 2� in the plane R2, each having distance from the origin at least

1, and whose basis vectors span a parallelogram of area � p
3 (i.e., such that the

quotient torus R2/L has area � p3).
On the other hand, Gabai and Mosher (see [Mo] for details) have shown, using

techniques from pseudo-Anosov 
ows, that every hyperbolic 3-manifold M with

boundary a torus T contains a `very full' essential lamination L disjoint from T .

See [GO] for de�nitions and basic concepts concerning essential laminations. `Very

full' means that the complementary components of L are all solid tori, except for the

componentN containing T , whose metric completion is homeomorphic to T�I with
some �nite collection of parallel simple closed curves removed from one boundary

component. These curves, projected to T and given parallel orientations, give a

collection of curves (typically, a single curve) 
 representing the element

(a; b)2Z� Z=H1(T ),

called the degeneracy locus. The number a=b is called the degeneracy slope of the

lamination (w.r.t. our chosen basis for H1(T )), and jgcd(a,b)j is its multiplicity.
We denote byM(p=q) the result of p=q Dehn �lling along T ; the closed manifold

obtained by gluing a solid torus to M along T so that the curve representing (p; q)

in H1(T ) is glued to the boundary of the meridian disk of the solid torus. It follows

from standard arguments (see, e.g., [GK],[De1]) that this lamination L remains

essential in the manifoldM(p=q) so long as jaq�bpj > 1, i.e., the curves representing

(a; b) and (p; q) in T have intersection number greater than one.

Gabai [Ga] has termed genuine any essential lamination L in a 3-manifoldM for

which some component N of the manifold M jL obtained by splitting M open along

L is not an I-bundle over a (usually non-compact) surface, with @N corresponding

to the induced @I-bundle. In other words, a lamination L is not geuine if every

component of M jL is an I-bundle. In [Br1], we noted that the classi�cation of

essential laminations in exceptional Seifert-�bered spaces [Br2],[Cl] implies that no

essential lamination in an exceptional Seifert-�bered space is genuine, which gives

the obvious corollary that any manifold containing a genuine essential lamination

is not an exceptional Seifert-�bered space.

But it is easy to see that the very full lamination L in M is in fact a genuine

essential lamination in M(p=q), provided jaq� bpj > 2. This is because the compo-

nent N ofM(p=q)jL containing (the image of) T is a solid torus with a collection of

essential curves 
 on the boundary removed. 
 has intersection number jaq�bpj >2
with the meridian disk of the solid torus. This solid torus cannot, therefore, be

given the structure of an I-bundle as described above; the meridian disk would

have to intersect the curves 
 exactly twice.



It follows, therefore, that the Dehn �llings which give exceptional Seifert-�bered

spaces must lie on the �ve lines ay � bx=k, where k=0 (i.e., x=y = a=b), �1, or
�2. Note that the lattice points lying on the lines ay � bx = 1 and ay � bx = �1
(i.e., a(�y) � b(�x) = 1), for example, give the same Dehn �lling coe�cients x=y

= (�x)=(�y). So the coe�cients of the exceptional Seifert-�bered �llings all lie on

the three lines ay � bx=0,1,2. In particular, since manifolds containing essential

laminations are irreducible and have in�nite fundamental group [GO], the coe�-

cients of �nite/reducible �llings all lie on the two lines ay � bx=0,1. Therefore, all

�nite/reducible/exceptional Seifert-�bered �llings lie on these three lines.

As we shall see, a straightforward calculation, following the lines of [BH], shows

that, for a lattice in R2 as described above, at most 20 primitive lattice points

within the disk of radius 2� can lie on three such lines. Since none of the three

types of manifolds (�nite �1, reducible, or Seifert-�bered) can admit a metric of

negative curvature - manifolds with such metrics have universal cover R3 (so are

not �nite/reducible) and contain no Z�Z's in their fundamental group (so are not

exceptional Seifert-�bered spaces) - we immediately obtain the theorem.

1. The calculations

We �rst recall the setup of [BH]. We can assume that the universal cover of M

is hyperbolic 3-spaceH3 with a collection of horoballs removed. We can expand the

horoballs equivariantly until they �rst touch one another. One of these horoballs

can be assumed to be centered at 1, so its boundary horosphere E2 is a horizontal

plane in the upper half-space model, which we can assume lies at height 1 above

the x-y plane. The metric on H3, restricted to E2, is a Euclidean metric on E2.

The fundamental group of the boundary torus T acts by Euclidean isometries on

E2, and so acts on the points of tangency of E2 with the other horoballs. Since

those horoballs have diameter one and are disjoint from one another, these points of

tangency are at least distance one apart. These points form a lattice L in E2, which

(after choosing an origin) represent the closed curves in T . Furthermore, by Adams

[Ad1], a fundamental domain for this lattice has area at least
p
3. Any Dehn �lling

corresponding to a lattice point outside of the circle of radius 2� about the origin

gives rise to a manifold admitting a metric of negative curvature.

Following [BH], by a Euclidean isometry, we can assume that L has basis con-

sisting of v1=d(1; 0) and v2=d(x0; y0), where d � 1, 0 � x0 � 1/2, 0 � y0, and

x2
0
+ y2

0
�1. These are the so-called geometric coordinates on the cusp T ; v1 repre-

sents the shortest geodesic on T , and v2 represents the shortest geodesic that is not

a multiple of v1. Furthermore, since the area of the parallelogram spanned by v1
and v2 (which is a fundamental domain for L) is d2y0 �

p
3, we have y0 �

p
3=d2.

With respect to this basis, our degeneracy locus is represented by

av1+bv2, for some a; b2Z
For convenience, we will denote such lattice points as (a;b) = av1+bv22L.
We wish to bound, for any �xed (a; b) 6= (0; 0), the number of points (r; s) in



our lattice L, representing simple closed curves (i.e., with gcd(r; s)=1), of the form

(r; s)=rv1+ sv2, where as� br=0,1, or 2

and which lie inside of the circle of radius 2�. It is clear that for a �xed a=b, this

number is maximized when gcd(a; b)=1. If we set c=gcd(a; b) and a0=a=c, b0=b=c,

then as� br=0,1,or 2 means a0s � b0r=0,1=c, or 2=c. Since a0s� b0r is an integer,

this in turn means a0s � b0r=0 only (if c �3) or a0s � b0r=0 or 1 (if c=2). These

clearly yield a smaller sets of solutions than if we start with a0 and b0 in the �rst

place (i.e., c=1). Therefore, in searching for an upper bound, we may assume that

gcd(a; b)=1.

Consider �rst the case (a;b)=c(1; 0) (i.e., b=0). Then jas � brj=jcsj=0,1, or 2
requires s=0,1, or 2. So we need to bound the number N of lattice points in

A =A0[A1[A2 = fv1g[frv1+v2:jjrv1+v2jj � 2�g[frv1+2v2: r is odd and

jjrv1+2v2jj � 2�g .
In A1 the lattice points are distance jjv1jj � d apart, while in A2 they are

distance � 2d apart, since only r odd will give gcd(rc; 2)=1.

These sets lie on the lines y = y0, y = 2y0, and the segments of these lines lying

inside the disk of radius 2� have length

2((2�)2 � y2
0
)1=2 � 2((2�)2 � (

p
3=d2)2)1=2 = 2(4�2 � 3=d4)1=2 = `1 and

2((2�)2 � (2y0)
2)1=2 � 2((2�)2 � (2

p
3=d2)2)1=2 = 2(4�2 � 12=d4)1=2 = `2 .

To �nd an upper bound on N , we therefore wish to maximize the quantities

N1(d) = `1/d and N2(d) = `2/2d, where d ranges over [1,1). We can then �t in

one more primitive lattice point than the integer parts of these quantities, on each

segment. Both of these quantities, it turns out, are decreasing functions of d on

[1,1); their nearest critical points (which are local, hence global, maxima) are at

d2=3=(2�) for N1, and at d2=3=� for N2. N1(1)=2((4�
2� 3)1=2 � 12.079, so there

are at most 13 lattice points on the �rst line as� br = 1 (i.e., A1 contains at most

13 points), while N2(1)=2((4�
2�12)1=2/2 � 5.242, so A2 contains at most 6 points.

Consequently, A contains at most 20 = 1+13+6 points.

We obtain much the same picture as above, for any other choice of (a;b), i.e., for

b 6=0. Points (r; s) satisfying (*) as�br = k are of the form (rn; sn)=(r0+na; s0+nb),

where (r0; s0) satis�es (*), and n is an integer. Consecutive points are therefore

distance

jj(rn; sn)� (rn�1; sn�1)jj = jj(a;b)jj = djja(1; 0) + b(x0; y0)jj
= d((a+ bx0)

2 + (by0)
2)1=2 � jbjdy0 � jbjp3=d � p

3=d

apart. Moreover, when k=2, only every other point (rn; sn) will have gcd(rn; sn)=1;

this is perhaps most easily seen by considering cases. We may assume that one of

r0; s0 is odd (if both are even, then one of r0+a; s0+ b is odd, since a and b cannot

both be even (they are relatively prime)). But then it is easy to see that both of

r0 + a; s0 + b are even; r0b� s0a = 2 implies that r0b and s0a are either both even

or both odd. For example, a and b odd implies r0 and s0 are either both even or

both odd, so both are odd (since one of them is), so the two sums are even. The



other two cases are similar. One the other hand as� br=2 implies gcd(r; s) divides

2, so is either 2 (when both are even) or 1 (when one is odd). The above argument

therefore shows that only every other pair of terms has gcd(r; s)=1.

In general, points of our lattice L are all at least distance d apart, and any

line segment in the interior of the disk has length at most 4�, so we can obtain a

fairly crude (though e�ective) estimate on the size of A; A1 can have no more than

(4�/d)+1) points, and A2 can have no more than (4�/2d)+1) points (since only

every second lattice point on the line has gcd(r; s)=1), so A has no more than

N 0

1
(d) = 1+(4�/d)+1)+(4�/2d)+1) = 3+(6�/d)

points. This is less than or equal to 20, provided d �6�/17 = �.

But in the present case (b6=0) we also know that the lattice points on our line

segments are at least distance
p
3=d apart, so A has no more than

N 0

2(d)=N
0

1(
p
3=d)=3+(6�/(

p
3=d))=3+(6�/

p
3)d

points. This is less than or equal to 20, provided d �(17p3)/(6�) =�.
But � < 1.11 < 1.56 < �, so d is either larger than � or smaller than �. So

one of the two conditions must be satis�ed, and so A never contains more than 20

primitive lattice points. This proves the theorem.

Remark: Using the two bounds 3+(6�/d), 3+(6�/
p
3)d for N together, in fact,

implies that when b6=0, N �17. This is because one of the two bounds is always

�17; the point where which is larger switches is at d = 31=4, and one of the bounds

is always lower than the value of N 0

1
=N 0

2
at this point, which is approximately

17.323. A more careful look the two main pieces (4�=d)+1, (2�=d)+1 of N 0

1
(and

the analogous pieces of N 0

2
) improves this upper bound to 16, since it is the integer

parts of the two pieces that really contribute to N . For N 0

1
and N 0

2
the pieces also

become equal at the same point d = 31=4, where they equal approximately 10.5484

and 5.7742, respectively. For one of N 0

1,N
0

2, each piece is less than each of these

values, giving bounds of 10 and 5 on their contributions to N .

Recently Wu [Wu] has shown that if p=q Dehn �lling along T produces a toroidal

manifold (i.e., a manifold containing an embedded incompressible torus), then in

our current notation jaq�bpj � 2, as well. This also follows from the results of [BR].

Taken together, the arguments here then show that at most 20 Dehn �llings on a

hyperbolic manifold can produce a manifold which is either reducible, toroidal, has

�nite �1, or is an exceptional Seifert-�bered space. According to the geometrization

conjecture, this list contains all non-hyperbolic 3-manifolds. It is conjectured that

the best upper bound on the number of non-hyperbolic Dehn �llings is actually 10;

this hypothetical maximum is achieved by the exterior of the �gure-8 knot. Recently

Hodgson and Kerckho� [HK] have shown that there is in fact a single universal

bound on the number of non-hyperbolic Dehn �llings of a hyperbolic manifold; the

arguments follow a line similar to the 2�-theorem, but involve a bound in the range

of 4� to 8� for the length of the �lling curves.



2. Concluding observations

Better bounds than what we have achieved here exist, when one makes additional

assumptions about the manifold M . When the tunnel number of the manifold M

(the minimum number of disjoint arcs one needs to drill out in order to turnM into

a handlebody) is two or more, then Adams [Ad2] has shown that the fundamental

domain of the lattice we have studied has area at least 3
p
3/2. This better bound

on the area leads, using the analysis of [BH], to a bound of 16 on the number of

Dehn-�lled manifolds which do not admit a negatively-curved metric. Unlike the

previous bound of 24, the techniques we use here cannot obtain a correspondingly

better bound; for some con�gurations of the lattice, these 16 points lie on our three

parallel lines. In this case, if the degeneracy slope of the lamination is not the

shortest geodesic, however, we can improve our bound of 16 to 13. This can be seen

by replacing the function N 0

2
with N 0

3
(d) = N 0

1
((3
p
3)=(2d)) and carrying out the

re�ned analysis of the previous paragraph.

The existence of an essential lamination implies many strong properties for a 3-

manifold. For example, as we have mentioned, manifolds with essential laminations

(usually called laminar manifolds) have universal coverR3 [GO]. By combining this

fact with the fact that manifolds with negative curvature metrics have universal

cover R3, as well, the above analysis shows that all but at most 14 Dehn �llings

(those lying on the lines ay � bx=0 or 1) of a hyperbolic 3-manifold M with one

boundary component yield manifolds with universal cover R3. In the case of tunnel

number at least two, all but at most 12 do. If the degeneracy slope is not the

shortest geodesic, then all but 11 do, in general, and all but 9 do if M has tunnel

number at least two.

Recently, essential laminations were used [BW] to completely classify the mani-

folds which are obtained by Dehn surgery on (non-torus) 2-bridge knots, according

to whether they have �nite �1, a reducing sphere, an essential torus, an exceptional

Seifert �bering, or a hyperbolic structure. They have also been used [DR] to show

that non-trivial surgery on a (non-torus) alternating knot yields a manifold with

universal cover R3, which proves (a strong version of) Property P for these knots.

In particular, essential laminations have demonstrated at least one advantage

over other `characteristic' objects in 3-manifolds. This is the property we have ex-

ploited here: there is a fairly easily recognized topological property of the lamina-

tion (genuine-ness) which implies that the ambient manifoldM is not an exceptional

Seifert-�bered space. This is probably the most useful topological criterion currently

available for showing that a manifold does not admit an exceptional Seifert �bering.

New constructions of essential laminations are therefore sure to yield similar results

along the lines of this note.

The arguments here also raise several interesting questions. For example, if a

manifold M were to admit essential laminations with distinct degeneracy slopes,

then the �nite/reducible/exceptional Seifert �lling coe�cients would have to lie on

both sets of corresponding lines. At most 5 (primitive) lattice points can do so



(just consider the slopes 1/0 and 0/1). It would be interesting to know when this

occurs. Two such slopes cannot be found in general - they can't, for example, for

the (�2,3,7) pretzel knot exterior [BNR]. This does sometimes occur, however - for

example, for the knot 820 [De2].

We obtained better upper bounds on the number of `bad' Dehn �llings when we

assumed that (a;b) 6= (1; 0), i.e., the degeneracy slope did not correspond to the

shortest geodesic in T . It would probably be reasonable to expect that the shortest

geodesic must occur as the degeneracy slope of an essential lamination, but this isn't

true. According to SnapPea [We], the 18/1 curve on the boundary of the (�2,3,7)
pretzel knot exterior is the second shortest curve; the meridian is shortest. It would

be interesting to determine when this sort of behavior does (and doesn't) occur.
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