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In this paper we show that an essential lamination L in a non-Haken

3-manifold M is `tightly wrapped', in the sense that any two leaves of

L have intersecting closures; L therefore contains a unique minimal sub-

lamination. We also show that these properties are inherited by any lift

of L to a �nite cover of M.

Essential laminations are natural generalizations of incompressible surfaces in a 3-

manifold, and give topologists an object which can be found in many more 3-manifolds than

an incompressible surface can (see, e.g., [De] or [Na]). Yet they retain enough properties

in common with incompressible surfaces so that they can be used to prove some of the

powerful results about 3-manifolds that incompressible surfaces have been used to prove

(see, e.g., [G-O] or [G-K]).

This note was motivated by asking the question `What more can be said about an

essential lamination if we know that the 3-manifold M containing it is non-Haken, i.e.,

M does not contain a (2-sided) incompressible surface?' What we �nd is the following

`structure theorem':

Theorem 1: Let L be an essential lamination in a compact, non-Haken 3-manifold.

Then L contains a unique non-empty minimal sublamination L0, i.e., a lamination L0 � L
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with the property that L0�L for every leaf L of L. L0 can therefore be de�ned (a posteriori)

as L0 =
\
L�L

L 6= ;.

Since a codimension-1 foliation without Reeb components is an example of an essential

lamination, we have as an immediate consequence:

Corollary 2: A codimension-1 foliation F without Reeb components in a compact

non-Haken 3-manifold M contains a unique minimal set.

This corollary is of independent interest; it is also an interesting example of a foliation-

theoretic result which (seemingly) requires a lamination-theoretic proof. Previously (see

[La] or [Co]) it was known that F has only a �nite number of distinct minimal sets (that

result does apply much more generally, however).

Thus (in a sense), in a non-Haken 3-manifold essential laminations must be `tightly-

wrapped'. This restriction on their structure adds a potentially useful new tool to the

further study of essential laminations. In particular, since Haken manifolds are already

fairly well-understood, this additional structure appears in exactly those 3-manifolds in

which essential laminations will be the most useful: those which do not already contain

an incompressible surface. It can therefore turn what might be perceived as a liability

(the lack of an compact leaf, to which more classical techniques could apply) into an asset

(extra information about the `shape' of the lamination); see, e.g., [Br1]. This usefulness will

have its limitations, however: in the second section we demonstrate its lack of application

to �nding Haken �nite coverings of non-Haken 3-manifolds, by showing that the same

tightness property is inherited by any lift of L to a �nite cover of M.
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1. Proof of Theorem 1:

The reader is referred to [G-O] for the basic concepts regarding essential laminations.

We will assume throughout that the 3-manifold M in question is compact (hence closed,

because M is non-Haken), connected, and orientable.

Proposition 3: If M is an irreducible 3-manifold with non-empty boundary, then

either M contains a closed (2-sided) incompressible surface or M is a handlebody.

Proof: Choose a @-component F of M. If it is incompressible, we are done. Otherwise

there is a compressing disk D for F, and we begin building a compression body (see [Bo])

for M along F by writing M= M0[C0, where C0 = N(F[D) (i.e., it is N(F) with a 2-handle

attached), and M0 is the rest of M. @M0 has boundary component F0 =@N(F[D)nF, and

we again ask if this is incompressible in M0. Continuing inductively, if at any stage Fi

is incompressible in Mi, then it is incompressible in M, because Fi is also incompressible

in Ci (turning it upside-down (i.e., turning its handlebody structure upside-down), Ci is

basically N(Fi) with a bunch of 1-handles attached, so Fi �1-injects). Otherwise, we can

decompose F down to a collection of sphere @-components of some Mn. It is easy to see

that Mn is irreducible (inductively), and so Mn then consists of a union of 3-balls = 0-

handles; Turning Cn upside-down then demonstrates that M is a union of 0-handles with

1-handles attached, i.e., is a handlebody.

Lemma 4: Every lamination L contains a minimal sublamination, i.e., a non-empty

lamination L0�L which contains no proper (non-empty) sublamination.

Proof: Look at the collection of non-empty sublaminations of L, ordered by inclusion.

Because M is compact, any sequence L0 � L1 � : : : has a lower bound
T

i
Li 6= ; (any
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�nite intersection is non-empty, so the full intersection is; it is a lamination because any

leaf of L which has a point in the intersection is entirely contained in each Li, so is entirely

contained in their intersection). Therefore, by Zorn's Lemma, this collection contains

minimal elements, i.e., non-empty sublaminations properly containing no others.

Lemma 5: If L0 is an essential lamination obtained from the essential lamination L

by splitting L open (see [G-O]) along some �nite collection of leaves, and if L0 contains a

unique minimal sublamination, then L contains a unique minimal sublamination.

Proof: From the de�nition of splitting it follows that there is a continuous surjection

� : M! M with �(L0)=L which carries leaves of L0 onto leaves of L (just crush the I-�bers

of the splitting regions to points).

If L0 is a non-empty minimal sublamination of L, then L00= ��1(L0)\L0 is a sublam-

ination of L0. By assumption, L0 contains a unique minimal sublamination C0, so because

there is a minimal sublamination of L0 in L00 (there is a minimal sublamination for L00,

thought of on its own, which must then be minimal for L0, as well), it follows that C0 �L00.

But then �(C0) � �(L0
0
)=L0 is closed in M (C0 is closed hence compact in M, so

�(C0) is compact hence closed in M) and saturated (leaves go to leaves under �), so is a

non-empty sublamination of L contained in L0; therefore, L0= �(C0) by the minimality of

L0. Therefore every minimal sublamination of L is equal to �(C0), i.e., there is only one.

Now let L �M be an essential lamination carried with full support by an essential

branched surface B�M, with M compact.
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Proposition 6: If M is non-Haken, then Mnint(N(B)) consists of handlebodies; in

particular, B is connected.

Proof: By the above proposition, if some component M0 is not a handlebody, then it

contains a closed incompressible surface F� M0. The branched surface B[F then carries

the lamination L[F with full support, and it is easy to verify that B[F is essential in

M. The surface F misses the branch locus of B[F, so B[F has no disks of contact or

monogons because B doesn't; @hN(B[F) is incompressible by the choice of F, and has no

disk or sphere components because F is not a disk or sphere; and MnN(B[F) is irreducible,

again by choice of F. Finally, B[F has no Reeb branched surface: since B doesn't have

one, any such would have to include F. But since any lamination carried by F must contain

a surface homeomorphic to F (the �rst leaf you meet falling in along an I-�ber must be a

1-fold cover of a component of @N(F)=F[F), F must be a torus, and the Reeb component

must consist of a surface parallel to F together with planar leaves limiting on it from parts

of B. But this is impossible, because this would require branch curves along F, which do

not exist.

Therefore by [G-O] every leaf of L[F, and F in particular, is �1-injective in M, making

M Haken (it is already irreducible by [G-O]). But this contradicts our hypothesis, so every

component M0 is a handlebody. It follows that B is connected; if it weren't, then some

component of Mnint(N(B)) would have more than one @-component.

Essential laminations carried by branched surfaces with the above property are stud-

ied in [H-O], where they are called `full'; this result therefore says that every essential

lamination in a non-Haken 3-manifold is full.
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Proposition 7: M and L as above. Then for any two leaves L1, L2 of L, the

intersection of their closures, L1 \ L2 is non-empty.

Proof: Consider the essential lamination L0= L1 [ L2, carried (see [G-O]) with full

support by some essential branched surface B0. Split L0 open along L1 and L2; call the

resulting lamination L0. L0 is still carried by B0, and there is a canonical projection

�:M!M with �(L0)=L0 which takes an I-�ber of B0 to itself. Let Ak, for k=1,2, be the

inverse image, in L0, of the leaf Lk, under �. Each consists of one or two leaves, bounding an

I-bundle component of MjL0, and each leaf maps onto Lk under �. The essential lamination

L0 meets the I-�bers of B0 in nowhere-dense sets; this is because L1 [ L2 is dense in L0,

and (in an I-�ber) these points have been replaced by intervals meeting L0 only in their

endpoints.

By [G-O], the branched surface B0 is in�nitely splittable to L0; there is a sequence

B0;B1;B2; : : : of essential branched surfaces carrying L0 (with full support), with L0�

N(Bi) � N(Bi�1), and \N(Bi) =L0. Applying Proposition 6 to Bi, we can then conclude

that it is connected. Since for each of the leaves Ak, k=1,2, the support (in Bi) of the

sublamination Ak is a (closed) sub-branched surface of Bi, it follows that these supports

are not disjoint (otherwise they exhibit Bi as the union of two disjoint closed subsets). So

there is an I-�ber �i of N(Bi) which meets both A1 and A2. In particular, �i meets A1

and A2, in points xi and yi, respectively.

Consider the set of points xi � A1; this sequence has a limit point x in L� A1. But

because L0 met transverse arcs in nowhere-dense sets, it follows that the I-�bers of the
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N(Bi) must be becoming uniformly short (the I-�bers of the N(Bi) are nested in the I-

�bers of N(Bi�1), so their lengths must tend to zero, because L0 contains no transverse

arcs). Therefore, the distance between xi and yi must be tending to zero; but then since

the sequence xi tends to x, it follows that the sequence yi also tends to x. But the yi

are all in A2, and so any limit point they have lies in A2, and therefore x lies in A2, i.e.,

x 2 A1 \ A2, which is therefore non-empty. But because �(Ak)=Lk (so Ak���1(Lk)), it

then follows that ; 6= A1 \A2���1(L1)\(��1(L2))=��1(L1\L2), so L1 \ L2 6= ; in L0.

This now allows us to �nish the proofs of the theorem and corollary. First, to unify

them, if L is actually a foliation F without Reeb components, split it open along a (�nite)

collection of leaves to make it an essential lamination L (i.e., so that it is carried by a

branched surface). Now by Proposition 7, the closure of any two leaves intersect. Let

L0 be a minimal sublamination for L, and write it as L0= L0 for L0 a leaf of L0 (L0

is a sublamination of L0, and so equals L0 by minimality). Then for any leaf L of L,

L \ L0 = L\L0 is a non-empty sublamination of L0 (it is easy to see that it is closed

and saturated), and therefore by minimality it equals L0, i.e., L0� L for every leaf L of

L. But if L1 = L1 is any other minimal sublamination for L, then the fact that L0 \ L1

is non-empty implies that L0= L0 \ L1 = L1, so there is only one non-empty minimal

sublamination. Therefore, by Lemma 5, our original lamination (or foliation) contains a

unique minimal sublamination.

Finally, we �nish with a slight improvement on the result L0� L:

Corollary 8: L, M as above, with unique minimal sublamination L0. Let L be a leaf

of L having an end � (see [Ni]). Then the limit set of the end, lim�(L), contains L0.
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Proof: lim�(L) is a closed, non-empty, saturated subset of L, i.e., a sublamination. It

therefore contains L0.

In other words, not only does every leaf of L limit on L0, but every end of every leaf

does, as well.

2. Haken coverings of non-Haken 3-manifolds

The structure theorem above shows that the leaves of essential laminations in non-

Haken 3-manifolds behave in a qualitatively di�erent fashion, in general, from those of

essential laminations in Haken manifolds. It therefore gives, in principle, a way to distin-

guish Haken manifolds from non-Haken ones: if a manifold contains an essential lamination

which fails to have the property stated in the theorem, then the manifold must be Haken.

This distinction is potentially useful in determining when a laminar 3-manifold is

virtually Haken. If M is non-Haken and contains an essential lamination L, which therefore

has the property that the closures of any two leaves intersect, and has a �nite covering

�: eM!M such that the inverse image L0 of L, which is an essential lamination in eM, has

two leaves with disjoint closures, then eM must be Haken, and so M is virtually Haken.

This is a nice image; however, that is all it is:

Theorem 9: If �: eM!M is a �nite covering, with M non-Haken and L�M an essential

lamination with L0�L its unique minimal sublamination, then L00=��1(L0)���1(L)=L0

is the unique minimal sublamination of L0; consequently, any two leaves of L0 have inter-

secting closures.
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This theorem therefore says that an essential lamination in a non-Haken 3-manifold

is really tightly wrapped; it can't be unwrapped by passing to �nite covers of M.

The only ingredient of the proof which we do not already have is the following result:

Proposition 10: If �, eM, M, L0, and L00 are as above, and if L00, L
0 are leaves of L00

with L0
0
�L0, then L0

0
=L0.

Proof: Suppose that L0
0
6=L0, so that L0

0
is properly contained in L0; in particular,

L0\L0
0
=;. We will show that �(L0

0
)6=L0, which is a contradiction, because �j

L
0

0

:L0
0
!L0,

where L0 is the leaf of L0 which L0
0
maps to, is a covering map, hence onto, so

L0=L0=�(L0
0
)��(L0

0
)�L0.

To do this, let N(B) be a �bered neighborhood of a branched surface carrying L0,

and let B0=��1(B) and N(B0)=��1(N(B)) (with I-�bers being carried to I-�bers under �).

Pick a �ber X of N(B), and consider ��1(X)=X1[: : :[Xn. Pick a point x2L0\X, and let

fx1,: : :,xkg=L00\�
�1(x), with xi2Xi, for all i. Because L00 is a closed set, for each xi2L00nL

0
0

(i.e., each i=k+1,: : :,n) there is an open neighborhood Oi of xi in Xi which misses L0
0
.

Consider O=�(O1)\ : : :\�(Ok)�X. Because � maps the �bers Xi homeomorphically

to X, this is an open subset of X containing x. Consider ��1(O)���1(X); note that

��1(O)\Xi�Oi for k+1�i�n.

Now look at ��1(O)\Xk=O0 (so �(O0)�O). This is an open neighborhood of xk in Xk.

Because L0 contains (L0
0
and hence) xk, there are points of L0 in Xk which pass arbitrarily

close to xk and hence are contained in O0. Choose one; call it y0
k
. Then y0

k
=2L0

0
, and

��1(�(y0
k
))\Xi=��1(y0) \ Xi 2Oi are not in L0

0
for k+1�i�n. So by choosing a di�erent

point y0 of O we have increased the number of points, in the inverse image of a point of
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L0\X, which are not in L0
0
. Continuing, we can therefore �nd a point y of L0\X (in fact,

in L0\O) with j��1(y)\(L00nL
0
0
)j=n, i.e., ��1(y)�L0

0
nL0

0
. But this means that y=2 �(L0

0
),

a contradiction. So L0
0
=L0.

The above result is a special case of a more general result on the structure of pullbacks

of laminations under non-zero degree maps; see [Br1],[Br2].

Proof of Theorem 9: For technical reasons, we must �rst (as in Proposition 7) split

L0 open along a leaf, to insure that L0 (and hence L0
0
) meets I-�bers of some (hence every)

branched surface neighborhood in nowhere-dense sets. We will �rst prove Theorem 9 for

this (possibly di�erent) collection of laminations.

Proposition 10 implies that for any pair of leaves L, L0 of L00, either L\L0=; or

L=L0. Consequently, L0
0
is the union of a �nite number of disjoint minimal sublaminations,

L1,: : :,Ln. This is because the closure of any leaf is a minimal sublamination, and every

minimal sublamination of L00 maps onto L0 under �. Thus for a given leaf L of L0, every

minimal sublamination of L0
0
contains an inverse image leaf of L, of which there are only

�nitely many.

Claim: n=1.

Otherwise, there is a branched surface closely approximating L0
0
which is not con-

nected. To see this, just choose one whose �bered neighborhood has �bers with length less

than � = half of the distance between two components of L0
0
; this can be done because (as

in Proposition 7) L00 meets I-�bers in nowhere-dense sets). But this also means that there

is an (essential) branched surface B carrying L0 with full support whose inverse image

under � is not connected; choose one with �bers of the same short length �.
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But this situation is absurd; B has complement consisting entirely of handlebodies,

hence so does ��1(B) (the only thing that �nitely covers a handlebody is a handlebody),

so every component of eMnN(��1(B)) has connected boundary, so ��1(B) is connected.

Therefore L0
0
is a minimal sublamination of L0. But then since for every leaf L0 of

L0, �(L0)��(L0), and since L0�L=�(L0) for �(L0)�L�L (since �(L0)=L), we have that

�(L0)\L0 6= ;, so L0\��1(L0)=L0\L
0
0 6= ;. Therefore L00�L

0. So any two leaves of L0 have

closures whose intersection contains L00; it is therefore the unique minimal sublamination

of L0.

But now if we collapse our split open leaves of L00 back again, Lemma 5 then insures

that L0 contains a unique minimal sublamination; in particular, it is the image under

collapsing of the minimal sublamination L0
0
, i.e., it is the original L0

0
.

As a �nal note, we should point out that not only is this true for ��1(L)=L0 , but also

for any sublamination L0
1
of L0; the closure of any leaf of L0

1
is the same whether we think

we are in L01 or L
0, so it contains L00. In particular, any essential branched surface carrying

L0
1
has complement consisting of handlebodies. For otherwise (by the proof of Proposition

6) there would be an incompressible surface in eM missing L01, hence missing L00, hence

contained in the handlebody complement of some essential branched surface carrying L0
0
,

a contradiction.
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