
When incompressible tori meet essential laminations

Mark Brittenham1 and Rachel Roberts2

Abstract. We show that there is only one obstruction to isotoping an essential
lamination L in a 3-manifoldM containing an essential torus T so that when both L
and M are split open along T , the resulting lamination LjT is essential in the split
open manifold M jT . This is the existence of a cylindrical component in L. This
generalizes previous results relating taut foliations and essential tori.

x0
Introduction

Roussarie and Thurston [Ro],[Th] showed that given a taut foliation F and an
incompressible torus T in a 3-manifold M , the torus may be isotoped so that it
is either transverse to the leaves of the foliation, or is equal to one of the leaves
of the foliation. This result was known to be false in the more general context
of a foliation F without Reeb components. The only obstruction, however [Ro],
is the existence of a `cylindrical component' of the foliation. This is an I-bundle
over a torus or Klein bottle, which is saturated by the leaves of the foliation. The
boundary component(s) of the bundle are leaves, and the interior of the bundle is
foliated by open annuli and M�obius bands, which spiral in towards the boundary
components in the same direction (see, e.g., [Ro,p.109]).

Even when F is taut and transverse to T , the foliation FjT (see x1 for notation)
need not be taut; it may have half-Reeb components, which are solid tori in M jT
bounded by an annulus leaf of FjT and foliated as `half' of a Reeb component (see
Figure 1). However, if the foliation is C(2), an argument due to Hass shows that
such components can be removed by a further C(2) isotopy of F (see [BNR]).

Figure 1

In this paper we show that these facts can be extended to C(0) foliations, and in
fact to essential laminations:

Theorem:. Given an essential lamination L and an incompressible torus T in a

3-manifold M , then, possibly after splitting L open along a �nite number of leaves,

either L can be isotoped so that it is transverse to T and LjT is essential in M jT ,
or L has a cylindrical component.

The isotopy of L can be thought of as an ambient isotopy of M , and so can
equivalently be thought of (by taking inverses) as an isotopy of T . It is more
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convenient, however, to think in terms of pushing L around, since it is LjT (and
not T jL !) that we will constantly be worrying about.

This result plays a central role in understanding the structure theory of taut
foliations and essential laminations in graph manifolds, given in [BNR]; it im-
plies that these objects come from their counterparts in the Seifert-�bered pieces
that one obtains after splitting a graph manifold open along incompressible tori.
Since essential laminations in Seifert-�bered spaces are extremely well-understood
([Br1],[Br2],[Cl],[JN],[Na]), we end up with a nearly complete picture of the exis-
tence and structure of essential laminations and taut or Reebless foliations in graph
manifolds; see [BNR].

This result also gives a method for determining that a laminar 3-manifold M

is atoroidal; if M contains an essential torus T , then one of three things must be
true: the lamination L has a torus leaf, or the torus misses L (and soM jL contains
an essential torus), or L (after splitting) can be isotoped to meet the torus tautly,
as above. In the last case, T\(M jB), where B is a branched surface carrying a
splitting of L, consists of a collection of essential bigons; disks whose boundaries
each meet the branch locus of B in two points, and are not homotopic to a disk
in B. Consequently, if we have an essential lamination with no torus leaves, whose
complement is atoroidal (this is typically the case; see, e.g., [Br4]), and whose
complement has no bigons, then our manifold must be atoroidal. This picture is
very similar to that given by Wu [Wu] for detecting atoroidality after Dehn �lling
of an atoroidal manifold. It also gives us a way to search for incompressible tori in a
laminar manifold which we might suspect has one, by `stitching together' essential
bigons in the complement of our lamination.

x1
Preliminary considerations

For basic information on essential laminations in 3-manifolds, see [GO]. For
information on train tracks and incompressible laminations in surfaces, see [BC].
For convenience, we assume that our ambient manifold M is orientable; all of
our arguments can be modi�ed in a straightforward manner to handle the non-
orientable case, after expanding the conclusion to include the obvious non-orientable
analogue of a cylindrical component.

Given a 3-manifold M and an embedded torus T in M , we denote by M jT the
manifold resulting from splitting M along T , i.e., Mnint(N(T )) . Given a foliation
F or lamination L transverse to T , we denote by FjT or LjT the induced foliation
or lamination in M jT . Similar notation also applies to 1-dimensional laminations
in surfaces, split along simple closed curves.

Given an essential lamination L in a 3-manifoldM , and an incompressible torus
T in M , we can make L transverse to T by a small homotopy of L. This is most
easily achieved by making T transverse to a branched surface B which carries L
(although see also [Br3]). For a foliation F , this �rst requires splitting F open
along a �nite number of leaves; see [GO]. The intersection L\T = � is then a 1-
dimensional lamination in T . By Reeb Stability, the collection of trivial loops in �
is both open and closed in �. By the `usual arguments' (see, e.g., [Br1]), we can
remove the trivial loops of � by an isotopy of L.

After this preliminary isotopy, LjT is almost essential in M jT ; all but one of the
properties in the de�nition of essential lamination [GO] are automatically satis�ed:
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(1) no leaf of LjT is a sphere, or a boundary-parallel disk, or a torus bounding
a solid torus.

This follows immediately from the analogous property for L, and because every
loop in L\T is essential in T , hence in the leaves of L.

(2) (M jT )n(LjT ) is irreducible.

If S is a 2-sphere in (M jT )n(LjT ) , then since it lies inM jT andM jT is irreducible,
S bounds a 3-ball B1 in M jT . Since S also lies in MnL and MnL is irreducible,
S also bounds a 3-ball B2 in MnL. Therefore either M = B1 [ B2 = the 3-sphere
(a contradiction) or B1 = B2 lies in M jT and in MnL, i.e., in (M jT )n(LjT ) . So
(M jT )n(LjT ) is irreducible.

(3) Each leaf of LjT is �1-injective in M jT .

If 
 is a loop in a leaf L0 of LjT , which is null-homotopic inM jT , then 
 is also null-
homotopic inM . So since 
 is contained in a leaf L of L (the one containing L0) and
L is essential, 
 is null-homotopic in L. If we choose a null-homotopy H : D !L

for 
, make it transverse to T , then H�1(T ) consists of a �nite collection of circles
and arcs in the 2-disk D. But since 
 lies in (we may assume the interior of, by
pushing o�) L0, 
\T = ;, so H�1(T ) consists only of circles. Each circle maps to
a loop in a leaf of �. Since each circle bounds a subdisk of D, its image is a loop
in T null-homotopic in M , so since T is essential, each loop is null-homotopic in T .
Since � consists of circles essential in T and lines, each circle in H�1(T ) therefore
maps to a loop which is null-homotopic in its leaf of �. So we can rede�ne H on
each subdisk to map into �\L0; by pushing o� slightly, we can then map D into
L0. So 
 is null-homotopic in L0; so LjT is �1-injective.

This property is equivalent to the two geometric properties that the boundary
leaves of LjT are (geometrically) incompressible in (M jT )n(LjT ), and LjT does not
contain a torus which is compressible in M jT .

(4) LjT is end-incompressible in M jT .

This also follows immediately from the fact that L is transverse to T ; an end-
compressing disk for LjT cannot be one for L, so can be homotoped into L; the
disk in L can then be made disjoint from T as above.

The only properties missing, therefore, in order to make LjT essential in M jT is
for the leaves of LjT to be (geometrically) @-incompressible inM jT , and for LjT to
admit no half-Reeb components. (These are equivalent to the algebraic condition
of @-injectivity; see [GO].) It is easy to see that we cannot expect this to be the case
in general. We can, for example, easily perturb something which is essential after
splitting along T so that it instead has leaves which are boundary-parallel annuli,
by `folding' the lamination near a circle of intersection with T .

However, we can see that, as in the case of a compact surface inM , if a lamination
fails to be essential only because one of these remaining properties fail, this is due to
the presence of @-parallel annuli. For a half-Reeb component, this is immediate. In
the other case, letD be a boundary-compressing disk for LjT . Because L is essential
and meets T transversely, and because we have already removed trivial circles
of intersection of L with T , the intersection � = L\T is an essential lamination
in the torus T . It therefore consists either entirely of non-compact leaves, with
product regions lying between, or contains compact leaves, possibly with Reeb or
Kronecker-type laminations lying between (see, e.g., [Br1]). In particular, every
complementary component of � has the structure of an in�nite rectangle R� I or
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annulus S1�I . But then the leaves of � which meet D must be compact; otherwise
D together with a half-in�nite rectangle in the complementary region lying between
them gives an end-compressing disk for L (see, e.g., [Br1]).

Consequently, both points in @(D\L) lie on compact loops of �. But since these
loops must be parallel in T , this implies that the leaf of LjT containing D\L must
be a @-parallel annulus. This is because D\L splits the leaf of LjT into a surface
with null-homotopic boundary (it is parallel to a null-homotopic loop in T ), which
must therefore be a disk, because it is a subsurface of a leaf of L. (Note that a
priori the leaf could be a boundary-parallel M�obius band, but this would imply that
T does not locally separate M , which it does, since M is orientable.)

In what follows it will be important that these @-parallel annuli cannot be too
`thin'; there is a positive constant � (depending on L) so that the intersection
of the associated solid torus with T has a width of at least �. This constant,
which we will call a monogon number for L, is determined by an essential branched
surface B carrying L. After making B transverse to T , then N(�) = N(B)\T is
a neighborhood of the train track � = B\T ; � is half of the minimum distance
between distinct horizontal components of N(�). Consequently, any two leaves of
L\T�N(�)\T (such as the edges of a @-parallel annulus leaf A of LjT ) which are
within � of one another must intersect the same I-�ber of N(�). But this would
then imply that an arc joining the edges of the annulus A is homotopic (via the
solid torus it cuts o�) rel endpoints to a segment in an I-�ber of N(B). This,
however, is impossible, by [GO, Theorem 1(d)].

x2
Warmup: laminations in surfaces

As a warmup to the proof of our main theorem, we will �rst prove the analogous
result for 1-dimensional laminations, and essential simple closed curves, in a surface.
The arguments used for the 3-dimensional case will turn out to be remarkably
similar to those we will give now; many of them will in fact carry over with no
changes whatsoever.

A lamination � in a surface F is a 1-dimensional foliation of a closed subset of
F . A lamination � is incompressible if no compact leaf is a simple closed curve
bounding a disk in F or a @-parallel arc, and F j� contains no monogons.

Theorem:. If � is an incompressible lamination in the orientable surface F and


 is an essential simple closed curve on F , then � may be isotoped so that �j
 is

an incompressible lamination in F j
, unless � contains a Reeb annulus.

A Reeb annulus is the 2-dimensional analogue of a cylindrical component. It is
an annulus whose boundary components are leaves of �; in the interior the leaves
of � are lines which spiral in the same direction toward the two @-components (see
Figure 2).

Figure 2

Proof: For notational convenience, we will arbitrarily choose a `positive' side of 
,
and refer to the two copies of 
 in F j
 as 
+ and 
�. If we do not care which one
we are dealing with, we will call it 
�.

As in the previous section, it is easy to see that, once � is made transverse to

, the only thing which keeps the lamination �j
 from being incompressible is the
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possible existence of @-parallel arcs. Because F j
 is compact, the set C of compact
arc leaves of �j
 is a (closed) sublamination in �j
; this is essentially the result
of Reeb stability [Re]; the set of simply-connected compact leaves is both open
and closed in any closed, saturated subset of a foliation. Similarly, the set A of
@-parallel arcs in �j
 is a sublamination of �j
 (and hence of C); this is most easily
seen by noting that the intersection A\(
+ [ 
�) is a closed set. For if not, then
(since C\(
+ [ 
�) is closed) there are @-parallel arcs having endpoints which limit
on a non-@-parallel arc �. But any arc having an endpoint su�ciently close to an
endpoint of � must be parallel to �. This can be seen by covering � with coordinate
charts running from one end to the other; since in each chart the leaves of � look like
parallel arcs, by starting at one end and looking at the arcs in each successive chart
that intersect the end of the previous chart, we can stitch together successively
thinner collections of arcs all the way from one end to the other. Consequently, all
leaves of � su�ciently close to � at any point are parallel to �. So if the end of �
is limited upon by @-parallel arcs, then they are all eventually parallel to �, so � is
also @-parallel. Once we know that A\(
+ [ 
�) is closed, it follows by the same
argument above, using coordinate charts, that A is closed.

Just as important, the argument above implies that A and C are open in �j
,
since any leaf of �j
 su�ciently close to a leaf � of C must be an arc, i.e., in C. In
particular, it must be parallel to �, so anything close to a leaf of A must also be in
A.

With these facts we can now describe how we will attempt to isotope � so that
�j
 is incompressible in F j
. If �j
 isn't incompressible, then A is non-empty;
these arcs fall into �nitely-many families of parallel arcs. Each family is open and
closed in A, and so we can, by an isotopy of �, push each family of arcs across 

(Figure 3a). To do this right, we should distinguish between two di�erent kinds
of families; those that hit 
 on the `left' side, and those that hit on the `right'.
Any two collections of arcs hitting 
 on the same side may be pushed across 
 at
the same time, since they don't interfere with one another. So we can set up a
sequence of isotopies of �, attempting to make �j
 incompressible, by �rst pushing
every @-parallel arc to the left of 
 across 
 and then pushing every @-parallel arc
to the right of 
 across 
. Let us call the resulting lamination, which is isotopic
to �, �1. We then start all over again, �nding and pushing all @-parallel arcs, to
produce a new lamination �2. In this way we obtain a sequence of laminations �i,
all isotopic to our original �. The e�ect on �i of each push is essentially to graft
together the families of leaves which lie at either end of the @-parallel arcs, while
erasing the @-parallel arcs (Figure 3b).

Figure 3

If we now assume that we cannot isotope � so that �j
 is incompressible, then
none of the �i is incompressible, and the process of �nding and pushing @-parallel
arcs can be continued inde�nitely. What we will do now is analyse how this process
can be continued; in the end, we will �nd that the only mechanism which can do
this is a Reeb annulus.

Suppose we wish to push a collection of @-parallel arcs across 
. In each parallel
family there is an innermost arc (since the collection is closed), and the disk it
cuts o� from F j
 meets 
 (and, for notational convenience, 
� as well) in an arc
�. Pushing the @-parallel arcs across 
 has the e�ect of erasing all the points of
�\
 lying in �, while no other points of �\
 are moved; we call � the site of the
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push. Because the only e�ect of the isotopy is to erase points, the sets Ci= �i\

form a nested sequence of closed sets in 
. Since 
 is compact, either Ci = ; for
some i (implying that �ij
 is incompressible in F j
, because it has no compact arc
leaves), or \Ci= P is a non-empty collection of points that are never moved by any
of the isotopies. These are the stable points of the sequence of isotopies. Since we
assume that at every stage there are some @-parallel arcs to push, it follows that
the inclusion of each Ci in its predecessors is proper.

Using a `monogon number' approach as in the 3-dimensional case, there is a
number �>0 so that every site has length at least � (otherwise, an arc in a leaf of �
would be homotopic, rel endpoints, to a segment of an I-�ber in the neighborhood
of an incompressible train track carrying �, implying that the train track has a
monogon). Consequently, there can be only an (a priori) bounded number (less
than (length of 
)/�) of disjoint sites on 
. Furthermore, since after each round
of isotopies, �i is disjoint from the sites of all previous pushes, the site for every
successive push is either disjoint from, or properly contains, the site of each previous
push. This in particular implies that if we wait long enough, no `new' sites are ever
created; we cannot continually have new sites which are disjoint from all previous
ones, otherwise we could pack too many intervals of length greater than � into

. After new sites stop appearing, we can then have sites that coalesce; a new
site could contain two or more previously disjoint sites. But this then lowers the
number of disjoint sites we can have, so eventually sites stop coalescing. Finally,
after this point, sites could `die'; a site might never be contained in a new site.
But this again lowers the number of disjoint sites. So eventually the sites of our
pushes stabilize, in a very strong way; beyond a certain stage �i, no new sites are
created, each site at any stage is eventually contained in a new site, and each new
site contains at most one site from any previous stage of the isotopy after �i.

Once we reach this point in our sequence of isotopies, if we now look at the
endpoints of any set of nested sites, they form a pair of monotone sequences on 
,
bounded from above or below by any point of the other sequence. Each sequence
therefore converges in 
. The interval between these limit points (which contains
both sequences) is in a very natural sense the limit of the nested sequence of sites.
The endpoints of these limiting intervals form a �nite set, which is in fact precisely
the set of points of P , the stable points on 
 of the sequence of isotopies, that are
limited upon by those points of �\
 which are removed by the isotopies. This is
because they are the only points limited upon by the endpoints of the @-parallel
arcs. It is this set which we will focus our attention on, to �nd our Reeb annulus.

We now assume that, in all that follows, we have waited through our sequence
of isotopies long enough so that the sites of all of our pushes have stabilized in the
sense given above, and further, that the endpoints of our sites are all within our
monogon number � of the corresponding ends of the limiting intervals. We rede�ne
the isotoped lamination to be �, and proceed to number subsequent laminations
from this new starting point as �1, �2, etc. Note that the new lamination still has
monogon number � w.r.t. 
, since any arc in our new �, with endpoints on 
, is
homotopic rel endpoints to an arc in the old �.

Each of our limiting intervals has a well-de�ned transverse direction; the direction
(after this stability of the number and kinds of sites has occurred) that any @-parallel
arc meeting the interval is pushed to. An interval cannot be assigned di�erent
directions at di�erent times, since this would imply the existence of @-parallel arcs



Tori and essential laminations 7

pushing in opposite directions across the same site. But then if we take the disk cut
o� by the arc occurring later in the isotopy, and allow it to 
ow back to the point
in time where the earlier one occurs, we �nd that we have two arcs in �i, which
at least start on opposite sides of 
, which are both homotopic rel endpoints to a
subarc of the limiting interval (see Figure 4). But this requires the existence either
of a compact, null-homotopic leaf in �, or an arc in � homotopic rel endpoints to
an an arc of the limiting interval having length less than �. This can be seen by
following the ends of the innermost (i.e., earlier) @-parallel arc; they must either
close up, giving the null-homotopic loop, or hit 
 again at a point inside of the outer
(i.e., later) arc, giving a null-homotopic arc cutting o� an arc from 
 of length less
than �.

Figure 4

One of the more important questions we must answer is: where do the @-parallel
arcs that we keep needing to push across 
 come from? If we think of a @-parallel
arc � in some �ij
, we can then imagine letting it 
ow backwards through our
isotopies, back to �. Its endpoints will not move, since each isotopy does not move
any of the points of �\
 that it does not erase. Since � is a compact arc, its image
in � intersects 
 only �nitely-many times. The image of � therefore consists of a
�nite number of compact arcs in �j
. Since � is not a @-parallel arc for � (otherwise
we would have pushed it at the beginning), the image of � (which we will still call
�, for convenience) must intersect 
 at points in the interior of �. In order for
these points to be removed, they must each, therefore, eventually be contained in
the ends of their own @-parallel arcs. If we imagine how the disk � that � cuts
o� from �ij
 changes as we 
ow back in the isotopy, we get our basic picture of
the isotopy process; � gets cut up into �nitely many arc leaves of �i�1j
; every
other arc is @-parallel. � is cut up by 
 into a disk lying between �nitely many
leaves of �i�1j
, and �nitely many disks bounded by @-parallel arcs (Figure 5).
Running this picture forward then give us our picture of how new @-compressing
arcs are formed. They form from disk regions � lying between �nitely many arc
leaves of �i�1j
; all but one of the arcs of �\
 are sites for pushes of @-parallel arcs
of �i�1j
; the remaining arc becomes the new site for the newly-created @-parallel
arc. Put di�erently, the transverse orientations for all but one of the sites around
the edge of � point into �; the remaining site points out of � and marks the site
where the newly created @-parallel arc will reside.

Figure 5 Figure 6

Some of the leaves of @� in �ij
 may not have existed in our original �j
;
they may have been pushed there sometime after the stabilization of pushing sites
occurred. This push must have occurred from outside of �, however; a push from
inside of � would violate our monogon number condition (Figure 6). So this leaf
arrived in its place after a push from a site other than those meeting �, allowing us
to enlarge � by adding another, inward pointing site. Since there are only a �nite
number of sites, however, this process cannot continue forever. As we continue to
look at the @-parallel arcs which appear at our outward pointing site, and look at
the disks � which created them, and evolve the leaves in their boundaries back in
time, we must eventually �nd ourselves always reconstructing the same disk. This
is because new @-parallel arcs at the same site are wider than the ones that come
before, so the arc leaves used to build its disk � must get out of the way of the arc
leaves used to build earlier disks, as we 
ow backwards in time. In other words,
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the disk from time 2N , say, evolved back in time to time N , must contain the disk,
from the same site, which we �nd at time N . So now when we evolve both disks
backwards in time, the 2N -disk, evolved to time 0, contains the N -disk, evolved to
0.

So, eventually, the disk associated to each site stabilizes, at least in terms of
which incoming sites it associates to its outgoing site. Any disk coming from further
along in the isotopy contains, but is otherwise parallel to, this largest disk. Taken
together, these disks combine along each of the sites to give a subsurface of F . But
an easy counting argument shows that this subsurface must be an annulus.

Each disk has some number n �1 of inward-pointing sites, and one outward-
pointing site. Each site is the outward-pointing site of one of these disks �. It is
not necessary for a site to be the inward-pointing site of a disk; such a site would
represent a place where @-parallel disks go o� to `die' (Figure 7). But since each
disk requires at least as many inward sites as outwards, and there are precisely
the same number of inward sites as outward sites, the inescapable conclusion is
that each disk has precisely one inward site, and there are no sites where arcs die.
More precisely, if we have k disks (i.e., k outward-pointing sites) each having ni �1
inward sites, and �ni � k (since each inward site is associated to at most (some
may die) one disk, hence at most one outward site), then each ni=1, and �ni = k,
i.e., each disk has exactly one inward site, and each inward site is associated to a
disk.

Figure 7 Figure 8

Each disk is therefore a rectangle, and they must be glued end-to-end to form
an annulus (Figure 8). These gluings are of course approximate, since the leaves in
the boundaries of the disks are not stable; they are pushed away in later rounds of
isotopies. However, what this does tell us is that there is no growth of these disks as
we evolve them backwards in time; the arc leaves in all of the @� are present in our
original �j
. If we look at the leaves of �j
 that come out of the endpoints of our
limiting intervals, since these endpoints are limited upon by the ends of compact
leaves of �j
, these leaves must themselves be compact, and therefore parallel to
the leaves in the boundaries of our disks �. These compact leaves glue together
end-to-end to give compact loops, which are leaves of �. Together they bound an
annulus (which our rectangles above were trying to approximate). The leaves of
� inside of this annulus consist of @-parallel arcs of �j
 together with the sides of
the rectangles, which together form the non-compact leaves of a Reeb lamination
in the annulus.

Consequently, if � can never be isotoped so that �j
 is incompressible, then if
we follow the procedure outlined above, eventually what we see is a collection of @-
parallel arcs spiralling around F between a pair of (stable - no isotopy moves them)
parallel circle leaves of �. This is precisely the Reeb annulus which we seek. We
should note that, technically, the two boundary curves could be the same curve,
if the Reeb annulus actually �lls up the surface F . This would imply that F is
a torus, since it is an annulus with its two ends glued together. Our lamination
consists only of a Reeb annulus, whose non-compact leaves are limiting on the same
closed loop, from both sides.
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x3
The 3-dimensional case:
killing @-parallel annuli

We now return to the proof of our main theorem. What we shall see is that we
have a nearly identical situation to the case of a lamination in a surface. The only
di�erence is that everything is `crossed with S1'. The basic idea is that our main
concern, @-parallel annuli, are @-parallel arcs crossed with S1, and the phenomenon
we seek, a cylindrical component, is a Reeb annulus, crossed with S1.

It is well-known that the collection of compact leaves of a codimension-one foli-
ation form a closed subset of the ambient manifold (see, e.g., [Co]). In fact, the set
of leaves homeomorphic to a given compact surface fall into �nitely-many parallel
families in the ambient manifold, each of which (after including some leaves that the
surface 2-fold covers, as, for example, with annulus leaves in the neighborhood of a
M�obius band leaf) form a closed set as well. The arguments apply equally well to a
lamination, and so we may assume that the annular and M�obius band leaves of LjT
fall into �nitely many parallel families whose union is a closed set (and therefore,
the collection of @-parallel annuli do, too). The collection of M�obius band leaves
is therefore �nite. If we, a priori, split L along the �nitely-many leaves containing
these M�obius bands, we can, at the outset, assume that LjT has no M�obius band
leaves.

What we will do now is isotope L by pushing these annuli, one family at a time,
across the solid tori that they split o� of M jT , and through T to the other side.
The key observation that we will need to make is that while this isotopy may create
new Reeb annuli, the `slope' of the boundary curves of the annuli cannot change.
This fact will allow us to use a loop in T geometrically dual to (i.e., having a
single transverse intersection with each of) the boundary loops of our annuli as a
bookkeeping device to keep track of these isotopies.

To see that this is so, choose such an initially dual curve 
 in T , and assume that
L has been isotoped so that � = L\T meets 
 as tightly as possible, i.e., 
 meets
all closed loops in � in a single point, and all non-compact leaves travel around T
so that as we travel along the leaf, we always meet 
 on the same side, except for
Reeb-type leaves, which switch sides exactly once (see Figure 9).

Now consider the e�ect on � when we push a family of @-parallel annuli through
T (Figure 10). We can think of this simply as pushing the innermost annulus A of
the family through T . The e�ect on � is to erase all of the leaves of � meeting the
solid torus M0 that A cuts o� of M jT (including the boundary curves of A), and
then splicing together any leaves of � that limit on @A from outside of M0\T =
A0. In particular, any compact leaves of � lying outside of A0 remain unchanged.
So if pushing A is going to result in @-parallel annuli of a di�erent slope being
created, then there must be no compact leaves lying outside of A0. So there are
only non-compact leaves, some of which limit on @A from outside of A0. But then
the new @-parallel annulus that is created must cross where @A used to run, and it
is easy (see Figure 11) to splice together the new @-compressing disk and an in�nite
rectangle between the leaves that were limiting on @A to create an end-compressing
disk for LjT , and hence for L, a contradiction. For a similar reason, no @-parallel
annulus of the same slope can intersect the site where an old annulus was pushed,
because we could just as easily build an end-compressing disk in this situation, as
well. This tells us that in order for there to be new @-parallel annuli for us to push,
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there must always be more compact loops of � lying outside of A0. So the new
leaves of � created by the push, which were made by splicing together the leaves
limiting on the ends of A0, are all non-compact; no new compact leaves are ever
created.

Figure 9 Figure 10 Figure 11

Now that we know that the slope of a @-parallel annulus is (for lack of a better
phrase) an invariant of L and T , we can set up a general procedure aimed at
sequentially killing o� any boundary-parallel annuli that we can �nd. To build our
isotopy, we �nd all of the boundary parallel annuli in LjT ; their intersection with
T forms a (closed) sublamination of A. These annuli fall into a �nite collection of
parallel families in M ; the loop 
 intersects the annulus that each family cuts o�
from T in an arc that has length greater than �. The families in turn are of one
of two types, depending upon whether it intersects T on the positive or negative
side. We now, in turn, push each family of annuli across T , by pushing all of the
annuli lying on the positive side across (this can be done all at once, because they
do not interfere with one another), then pushing all of the annuli on the negative
side, and then starting the process all over again. At each stage we create a `new'
lamination Li, which is isotopic to our original lamination L. We assume that at
no stage in the isotopy is LijT essential in M jT , i.e., at every stage we �nd new
@-parallel annuli to push.

As in the case of a lamination in a surface, we can choose a loop 
 in T which
will track the sites of our pushes. In this case, this means that 
 meets � = L\T
as tautly as possible; in particular, 
 meets every closed loop of � in exactly one
point. If we isotope L by pushing a @-parallel annulus A through T , the loop 
 will
nearly be as taut w.r.t the lamination in T (which we will call �1, etc.) resulting
from the intersection of the isotoped lamination (which we will call L1, etc.) with
T . In particular, it will be taut w.r.t. the closed loops of �1, because no new closed
loops have been created.

x4
Building the cylindrical component(s)

As with the case of a lamination in a surface, the most important question which
we need to answer at this point is: where will the new @-parallel annuli Ai for our
isotoped lamination Li come from after we have killed the old ones for Li�1? Any
new leaves of Li, since they weren't present before the isotopy, must arise from
leaves of Li�1 which were spliced together in the neighborhood of @A when A was
pushed through T . Since our new @-parallel annulus Ai, when we allow it to 
ow
back to L, is compact, it intersects T only in closed loops. These loops are essential
in T and hence in Ai. The annulus Ai is therefore cut up into annuli; alternate
annuli are @-parallel, and were pushed across T in order to create Ai. Iterating
this procedure for later and later appearing @-parallel annuli, we can conclude that
new @-parallel annuli come from the annulus leaves of �, by the sequence of gluings
which occur when @-parallel annuli are pushed. In particular, all of the annuli
which together make up any @-parallel annulus which we will push are present in
our original lamination L. This is directly analogous to the 2-dimensional case. In
particular, since a M�obius band leaf of some LijT would require a M�obius band leaf
of LjT among the leaves glued together to create it, none of the laminations LijT
have a M�obius band leaf.
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Consider now the @-parallel annuli for the lamination LijT . The innermost
annulus A in each family of @-parallel annuli cuts o� a solid torus M0 from M jT
(which contains all of the annuli in its family); its intersection with the loop 


is an arc �, which we will call (in conscious imitation of x2) the site of the push
corresponding to the family of @-parallel annuli. The site, together with an arc in
A, bounds a (@-compressing) disk � in M0; M0 can be thought of as ��S1. This
disk is the analog of the disks � from x2, as well.

Once a collection of annuli has been pushed, Li\T = �i is disjoint from the
site (and in fact from the annulus in T that the solid torus meets), and so, as
before, all further sites are either disjoint from, or contain, the site �. Using the
same monogon number argument, we can therefore wait until the collection of sites
along 
 stabilizes; after this point, no new sites are created, every site is eventually
contained in a new site, and every new site contains at most one site from any
previous isotopy. We can also then wait until the ends of each site are within the
monogon number � of the points that these endpoints are limiting on. We then,
as before, rede�ne this stage of the isotopies to be our actual starting point in the
collection of isotopies. As before, each of our sites has a well-de�ned transverse
orientation, the direction in which the @-parallel annuli are pushed across the site.
A site cannot be assigned di�erent orientations at di�erent times, since otherwise
we arrive at the same situation as Figure 5, crossed with S1, leading, again, to a
violation of our monogon number condition.

If we now imagine evolving the solid torus M0 cut o� by a @-parallel annulus
of LijT back through the isotopy, we see a similar pattern to the 2-dimensional
case emerge: the annulus A, 
owing back to Li�1, intersects T in a �nite number
of loops, cutting A into parallel annuli; alternate annuli are @-parallel, and are
pushed in Li�1 to create A in Li. The solid torus M0 pushed back to Li�1jT ,
is therefore cut into �nitely-many solid tori, all but one of which is the site for
a push of Li�1(Figure 12). The remaining solid torus has boundary alternately
consisting of annuli in T and annulus leaves of Li�1jT , and has the structure of
a disk, �, whose boundary alternately lies in T and in annular leaves of Li�1jT ,
crossed with S1. Some number n � 1 of these annuli in T represent inward-pointing
sites, where the @-parallel annuli of Li�1jT are push, while the remaining annulus
is the outward pointing site representing the new @-parallel annulus that is being
created. In other words, the situation here is the same one we had for a lamination
in a surface, crossed with S1.

Figure 12

As before, these disks � can evolve in only one way, as we look backwards in
the sequence of isotopies. The annulus leaves of Li�1jT meeting the boundary of �
might not belong to LjT , but were pushed there. Such leaves could only be pushed
from outside of �; otherwise we have the exact same situation as in Figure 6, crossed
with S1, which again violates our monogon number condition. Consequently, as we
look at @-parallel annuli further and further along in the isotopy, and look at how
the solid torus cut o� from it evolves backwards to the beginning of the isotopies,
we again get the same sort of stability as in the surface case; eventually, the disks
� associated to each become `parallel' to one another. Then the same counting
argument as in the 2-dimensional case leads us to conclude that these stabilized
disks � are all rectangles Ri, and so our backwards-evolved solid tori all have the
form of Ri � S1. As before, the annulus leaves of LjT forming the opposite sides
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of these rectangles therefore limit upon a �nite number of annulus leaves of LjT ,
which stitch together to form a pair of torus leaves of L. (In limiting cases, this
could be a single torus leaf, limited upon on both sides, or a Klein bottle leaf, cut
by T into annuli; only a single leaf would occur, because it would be one-sided, so
the annuli would have to limit on it from `both' sides.) The solid tori Ri�S1 would
stitch together to form an annulus crossed with S1, approximating the region lying
between the two torus leaves. As in the 2-dimensional case, the lamination in this
cylindrical region would look like a Reeb lamination in an annulus, crossed with
S1. In other words, these two torus leaves of L bound the cylindrical component
that we seek.
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