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Abstract. We develop some new topological tools to study maximal
subgroups of free idempotent generated semigroups. As an application,
we show that the rank 1 component of the free idempotent generated
semigroup of the biordered set of a full matrix monoid of size n×n,n > 2
over a division ring Q has maximal subgroup isomorphic to the multi-
plicative subgroup of Q.

1. Introduction

Let S be a semigroup with non-empty set E = E(S) of idempotents,
and let e, f ∈ E(S). It is easy to see that if e ∈ Sf ∪ fS, then both ef
and fe must also be idempotents of S. Products of idempotents of this
form are referred to as basic products in E. The set E = E(S) relative
to these basic products forms a partial algebra that has been characterized
axiomatically as a regular biordered set by Nambooripad [13] in the case that
S is a (von-Neumann) regular semigroup, and more generally as a biordered
set by Easdown [4] for an arbitrary semigroup S. The basic products in E
may be defined in terms of certain quasi-orders on E that are independent
of the specific semigroup S with biordered set E. We refer to [13] and [4]
for details of the axiomatic characterization of biordered sets: we will not
need these details in the present paper.

Given any (axiomatically characterized) biordered set E, the free idem-
potent generated semigroup on E is the semigroup IG(E) with presentation

IG(E) = 〈E : e.f = ef if ef is a basic product 〉.

Since a product of the form e.e = e is clearly a basic product, it is ob-
vious that IG(E) is an idempotent generated semigroup. A theorem of
Easdown [4] shows that the biordered set of idempotents of IG(E) is E,
that is, there is a bijection between E and the biordered set of idempotents
in IG(E) and these two biordered sets have the same basic products. The
semigroup IG(E) is a universal object in the category of idempotent gener-
ated semigroups with biordered set E and morphisms that are one to one on
idempotents. An analogous result was proved earlier by Nambooripad [13],
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who constructed a free regular idempotent generated semigroup RIG(E) on
a regular biordered set E.

Given an idempotent e of any semigroup S, the maximal subgroup He of S
with identity e is the group of units of the submonoid eSe of S. For example,
if e is an idempotent n× n matrix of rank r in the monoid Mn(Q) of n× n
matrices over a division ring Q, then He

∼= GLr(Q), the General Linear
Group of size r over Q. In [1] it is shown that if E is a regular biordered
set and e ∈ E, then the maximal subgroup of RIG(E) with identity e is
isomorphic to the maximal subgroup of IG(E) with identity e. A question
that has been of interest in the literature is: which groups can arise as
maximal subgroups of a free idempotent-generated semigroup IG(E) for
some (axiomatically characterized) biordered set E? Early results on this
problem (for example [16], [14]) suggested that such groups must be free, and
in fact this conjecture explicitly surfaced in the literature in [11], although
it had been conjectured since the early 1980’s.

In [1], the authors provided the first counterexample to this conjecture,
by showing that the free abelian group Z×Z can arise in this context. Sub-
sequently, Gray and Ruskuc [8] have shown that every group arises in this
context. However, the structure of the maximal subgroups of free idempo-
tent generated semigroups on naturally occurring biordered sets (such as the
biordered set of the full linear monoid Mn(Q) over a division ring Q) is far
from clear, and the main purpose of the current paper is to provide some
new topological tools to study this problem.

We remark that idempotent generated semigroups arise naturally in many
parts of mathematics. First of all they are “general”. It is well known
that every semigroup S embeds into a semigroup generated by a set of
idempotents of the same cardinality as S. If S is (finite) countable then S
embeds into a (finite) semigroup generated by 3 idempotents. Idempotent
generated semigroups play an important part in the theory of reductive
algebraic monoids [17, 21]. Putcha’s theory of monoids of Lie type shows
that one can consider the biordered set of idempotents of such a monoid to
be a generalization of a building [18, 19] in the sense of Tits. Thus such
objects have a natural geometric structure.

In their paper [1], the authors defined the Graham-Houghton 2-complex
GH(E) of a regular biordered set E, based on the work of Nambooripad
[13], Graham [7] and Houghton [10], and they showed that the maximal
subgroups of IG(E) are the fundamental groups of the connected compo-
nents of GH(E). The 2-cells of GH(E) correspond to the singular squares
of E defined by Nambooripad [13]. Gray and Ruskuc [8] give a new proof
that singular squares give presentations of maximal subgroups of IG(E) for
an arbitrary biordered set E.

We outline the main topological idea of this paper. Let S be an idempo-
tent generated regular semigroup with biordered set E = E(S). Then there
is a surjective idempotent separating morphism f : RIG(E) � S that is
an isomorphism on E. It follows that for every maximal subgroup G of S
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there is a unique connected component C of GH(E) and a unique point x
of C and a surjective morphism π1(C, x) � G. By basic algebraic topology,
G acts transitively and fixed point free on each fibre of the connected cover
C(G) of C that has fundamental group the kernel of this latter morphism.
Thus if C(G) is simply connected, G is isomorphic to a maximal subgroup
of RIG(E).

We apply these ideas to show that if Q is a division ring, then the maximal
subgroup of IG(E(Mn(Q))) corresponding to an idempotent matrix of rank
1 is Q∗, the multiplicative group of units of Q. The maximal subgroup of
IG(E(Mn(Q))) corresponding to an idempotent matrix of rank n − 1 is a
free group, but the structure of the maximal subgroups of IG(E(Mn(Q)))
corresponding to idempotent matrices of rank k for 1 < k < n − 1 remains
far from clear.

2. Preliminaries

Recall that a semigroup S is called regular if a ∈ aSa for each a ∈ S. In
a very influential paper [13], Nambooripad studied the structure of regular
semigroups via his theory of inductive groupoids. He found an axiomatic
characterization of the set of idempotents of a regular semigroup S relative
to the basic products in E(S) as a “regular biordered set” and he described
the inductive groupoid associated with the free regular idempotent generated
set RIG(E) on a regular biordered set E. A presentation for RIG(E) was
provided by Pastijn [16]. In [1], the authors showed that if E is a regular
biordered set, then the maximal subgroups of RIG(E) are isomorphic to the
maximal subgroups of the semigroup IG(E) defined above. We refer the
reader to [13] and [1] for details. We shall assume throughout the remainder
of this paper that all biordered sets under consideration are biordered sets of
regular semigroups.

Recall that the Green’s relations R and L on a semigroup S are defined
by a R b iff aS1 = bS1 and a L b iff S1a = S1b. When restricted to
E = E(S) these are defined by basic products: e R f iff ef = f and
fe = e, and e L f iff ef = e and fe = f . Thus, one can consider the
R and L relations on an arbitrary (axiomatically defined) biordered sets.
By the theorems of Nambooripad and Easdown mentioned above, these are
exactly the restrictions of the corresponding Green’s relations on RIG(E)
and IG(E) to E.

We can define Green’s relation D on a biordered set E as the transitive
closure of R ∪ L. It follows from the work of Fitz-Gerald [6] and Namboori-
pad [13] that this is the restriction of Green’s relation D to the idempotents
of RIG(E). Thus we identify these relations on E with the classical no-
tions on RIG(E) and IG(E) without further mention. In Nambooripad’s
language, [13], two idempotents of RIG(E) or IG(E) are D related if and
only if there is an E-path between them. This is just another way of saying
that D is the transitive closure of R ∪ L restricted to E.
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Central to Nambooripad’s construction of the inductive groupoid of RIG(E)
is the notion of a singular square in the (regular) biordered set E. An
E-square is a sequence (e, f, g, h, e) of elements of E with e R f L g R
h L e. Unless otherwise specified, we will assume that all E-squares are
non-degenerate, i.e. the elements e, f, g, h are all distinct. An idempo-
tent t = t2 ∈ E left to right singularizes the E-square (e, f, g, h, e) if
te = e, th = h, et = f and ht = g where all of these products are de-
fined in the biordered set E. Right to left, top to bottom and bottom to
top singularization is defined similarly and we call the E-square singular if
it has a singularizing idempotent of one of these types. All of these prod-
ucts are basic products, so they make sense in any semigroup with biorder
isomorphic to E.

The following simple but important fact was first noted by Nambooripad
[13]. Recall that the right zero semigroup on a set X is the set X with
multiplication xy = y for all x, y ∈ X. A left zero semigroup is the dual
notion and a rectangular band is the direct product of some left zero semi-
group with some right zero semigroup. Thus a rectangular band is defined
on some set of the form X × Y with multiplication (x, y)(x′, y′) = (x, y′),
for all x, x′ ∈ X, y, y′ ∈ Y .

Lemma 2.1. Let (e, f, g, h, e) be a singular E-square in a semigroup S.

Then efghe = e: in other words,

[
e f
h g

]
is a rectangular band in any

semigroup with biordered set E.

We remark that the converse of Lemma 2.1 is obviously false. For example

if the semigroup S is just a 2 × 2 rectangular band

[
e f
h g

]
, then it is not

a singular square since there is no idempotent available to singularize it.
Recall from [1] that the Graham-Houghton graph of a (regular) biordered

set E is the bipartite graph with vertices the disjoint union of the set of
R-classes of E and the set of L-classes of E, and with a directed (positively
oriented) edge from an L-class L to an R-class R if there is an idempotent
e ∈ L ∩ R (and a corresponding inverse edge from R to L in this case).
We now add 2-cells to this graph, one for each singular square (e, f, g, h, e).
Given this square we sew a 2-cell onto this graph with boundary ef−1gh−1.
We call the resulting 2-complex the Graham-Houghton complex of E and
denote it by GH(E).

The following theorem in [1] is based on the work of Nambooripad, and
is the principal tool used in [1] to construct maximal subgroups of free
idempotent-generated semigroups on biordered sets.

Theorem 2.2. [1] Let E be a regular biordered set. Then the maximal
subgroup of IG(E) based at e ∈ E is isomorphic to the fundamental group
π1(GH(E), Le) of the Graham-Houghton complex of E based at Le.

The following theorem is used crucially in this paper.



SUBGROUPS OF FREE IDEMPOTENT GENERATED SEMIGROUPS: FULL LINEAR MONOIDS5

Theorem 2.3. Let E be a regular biordered set. Then for any regular
idempotent generated semigroup S with E ≈ E(S), there is a one to one
correspondence between connected components of GH(E) and D classes of S.
Every maximal subgroup G of S is a quotient of a unique maximal subgroup
of RIG(E) that belongs to the unique connected component corresponding
to the D-class of G of S.

Proof Since E ≈ E(S), there is a surjective idempotent separating mor-
phism ϕ : RIG(E) � S. It is well known that f then induces a bijection
between RIG(E)/K to S/K for any of Green’s relations K. In particular,
this is true for K =D. As mentioned above, two idempotents are D related in
RIG(E) if and only if there is an E-path between them in E. Since positive
edges of GH(E) are in one to one correspondence with E, a straightforward
induction on the length of a path shows that there is a path between two
vertices of GH(E) if and only if there is an E-path in E whose first edge
belongs to the first vertex (recall that the vertices of GH(E) are the disjoint
union of R and L classes of E) and whose last edge belongs to the last ver-
tex. Since idempotent separating morphisms between regular semigroups
induce a 1-1 correspondence between H classes, the second statement of the
theorem follows. This completes the proof.

3. A Freeness Criterion

Let S be a regular idempotent generated semigroup and let E = E(S) be
its biordered set of idempotents. Let G be a maximal subgroup of S. By
Theorem 2.2 and Theorem 2.3 there is a unique connected component G of
GH(E), and a surjective morphism f : π1(G) � G from the fundamental
group of G to G.

Therefore, there is a unique (up to isomorphism) connected cover C(G)
of G that has Ker(f) as fundamental group. It is well known, [9] that G
acts freely on the fibres of C(G) and that G ≈ C(G)/G. The construction of
C(G) is a simple exercise in covering theory, but since we need the details,
we include them here.

Let C be a connected 2 complex and let ϕ : π1(C) � G be a surjective
morphism to a group G. Let T be a spanning tree of V (C). Then π1(C) and
G are generated by the positive edges (relative to some orientation) not in
T .

For convenience if e is an edge of C we identify e with its value as a
generator in π1(C) as above and ϕ(e) the corresponding value in G. Note
that e and ϕ(e) are the identity element if e ∈ T

Define the cover C(G) as follows:
Vertices: G × V (C)
Edges: We have an edge from (g, x) to (h, y), g, h ∈ G,x, y ∈ V (C) iff

there is an edge e from x to y in C and g · ϕ(e) = h in G.
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2-Cells: For every cell of C sewed on as a loop in C from some vertex
x to itself, we sew a copy of it as a loop from (g, x) to itself following the
edges modified by their lifts in the definition of edges above.

Then this is a cover of C denoted by C(G) under the projection G×V (C) →
V (C). G acts transitively and fixed point free on the left of each fibre
by g(h, x) = (gh, x) and the quotient C(G)/G ≈ C, π1(C(G)) E π1(C) and
G ≈ π1(C)/π1(C(G))

Finally, C(G) is clearly the universal object in the category of all covers
of C on which G acts transitively on each fibre.

Example 1 If C is a bouquet of X circles (no 2 cells), then G is an
X generated group and C(G) is just the Cayley graph of G relative to the
presentation f : π1(C) → G.

Example 2 Let E be a regular biordered set and let S be a regular idem-
potent generated semigroup with E(S) ≈ E. Let G be a maximal subgroup
of S. Then G corresponds by Theorem 2.3 to a unique connected component
C of GH(E) and there is a surjective morphism from the fundamental group
corresponding to this component to G.

Putting all this together we get the following criterion for G to be iso-
morphic to a maximal subgroup of RIG(E) (or equivalently IG(E) [1]). We
use the notation in Example 2.

Freeness Criterion If the cover C(G) of the group G is simply con-
nected, then G is isomorphic to the maximal subgroup of the corresponding
component of RIG(E).

4. Matrices over division rings

Throughout this section, Q will be a division ring, Mn(Q) will denote
the full linear monoid of n × n matrices over Q and GLn(Q) will denote
the general linear group, i.e. the group of units of Mn(Q). We will use
both lower case and upper case letters to denote matrices. We make use of
the covering space methods in the previous section to study the maximal
subgroups of the free idempotent generated semigroup on the biordered set
of idempotents of this monoid. In particular, we prove the following theorem,
which is the main result in this section.

Theorem 4.1. Let E be the biordered set of Mn(Q), for Q a division ring,
and let e be an idempotent matrix of rank 1 in Mn(Q). For n ≥ 3, the maxi-
mal subgroup of IG(E) with identity e is isomorphic to Q∗, the multiplicative
group of units of Q.

For basic facts about matrices over division rings, see the book by Ja-
cobson [12]. There is a great deal of information about full linear monoids,
particularly in the case where Q is a field (see for example the books of
Putcha [17] and Okniński [15]). Much of the basic structural information
about full linear monoids over fields extends to the case where Q is a divi-
sion ring, but care must be taken to extend some of these results if Q is not
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commutative. For example, linear combinations of rows will always be con-
sidered using left scalar multiplication, and linear combinations of columns
using right scalar multiplication; consequently row spaces are left row spaces
and column spaces are right column spaces.

It is well known that the set of matrices of a fixed rank k ≤ n forms a
J -class in the monoid Mn(Q). Here the rank of a matrix a ∈ Mn(Q) is
the (left) row rank of a, which is the same as the (right) column rank of a.
In fact, for matrices a, b ∈ Mn(Q), we have a J b iff GLn(Q) aGLn(Q) =
GLn(Q) bGLn(Q) iff rank(a) = rank(b), and J=D. The maximal subgroup
of the J -class of all matrices of rank k is isomorphic to GLk(Q). The Green’s
R and L relations on Mn(Q) are characterized by

a R b iff aGLn(Q) = bGLn(Q) iff Col(a) = Col(b), and
a L b iff GLn(Q) a = GLn(Q) b iff Row(a) = Row(b).
Let Dk be the D-class of Mn(Q) consisting of the rank k matrices, and

D0
k the corresponding completely 0-simple semigroup. Let Yk be the set of

all matrices of rank k which are in reduced row echelon form and let Xk be
the set of transposes of these matrices. The structure of D0

k is described in
the following theorem (see [15]).

Theorem 4.2. D0
k

∼= M0(Xk, GLk(Q),Yk, Ck) where the matrix Ck =
(Ck(y, x)) is defined for x ∈ Xk, y ∈ Yk by Ck(y, x) = yx if yx is of rank k
and 0 otherwise.

By Theorem 4.2 and the basic structure of Rees matrix semigroups (see,
for example [2]), every matrix a of rank k can be uniquely expressed in the
form a = xhy where x ∈ X , y ∈ Y and h is a block diagonal matrix of the

form

[
h′ 0
0 0

]
where h′ ∈ GLk(Q). Since x has n− k columns of zeroes at

the right of the matrix and y is the transpose of a matrix of this form we
see that we may write the matrix a = xhy of rank k in the form a = vwT

for some n× k matrices v,w of rank k (choose v = x′h′ where x′ is obtained
from x by deleting the last n − k columns, and wT is obtained from y by
deleting the last n−k rows). Also, we may replace x [resp. y] in the above by
matrices of the form x1 = xh1 [resp. y2 = h2y] for any matrices h1, h2 in the

maximal subgroup of

[
Ik 0
0 0

]
and get isomorphic Rees matrix semigroups.

Thus we may replace yx by wT v as above in the definition of the matrix Ck

and obtain an isomorphic Rees matrix semigroup.
If a is a rank-k matrix, expressed as a = vwT as above, then it is routine

to check that a is an idempotent iff wT v = Ik. Two rank-k n × n matrices
a = v1w

T
1 , b = v2w

T
2 are L-related iff a and b have the same row space,

which in turn is true iff wT
1 = mwT

2 for some non-singular k × k matrix m.
Similarly, a and b are R-related iff they have the same column space, i.e.,
v1 = v2m for some non-singular k × k matrix m. An L-class can therefore
be identified with the equivalence class [wT ] = {mwT : m ∈ GLk(Q)}, and
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an R-class can be identified with [v] = {vm : m ∈ GLk(Q)} where v,w are
n × k matrices of rank k.

Rectangular bands in the biordered set of idempotents E = E(Mn(Q))
may be characterized from the representation of rank k matrices described
above.

If e ∈ [v1]∩ [wT
1 ], f ∈ [v2]∩ [wT

1 ], g ∈ [v2]∩ [wT
2 ], h ∈ [v1]∩ [wT

2 ] forms an E-
square, then e = v1(w

T
1 v1)

−1wT
1 , f = v2(w

T
1 v2)

−1wT
1 , g = v2(w

T
2 v2)

−1wT
2 , h =

v1(w
T
2 v1)

−1wT
2 . Then this E-square is a rectangular band iff efghe = e. A

calculation of this product shows that this happens iff

(∗) . . . (wT
1 v2)(w

T
2 v2)

−1(wT
2 v1)(w

T
1 v1)

−1 = Ik.

(Note that the identity (*) is independent of the choice of representatives
of v1, v2, w1, w2 in their equivalence classes.) We have the following rather
pleasant fact about the semigroup Mn(Q).

Theorem 4.3. Every non-trivial rectangular band in Mn(Q) (for a division
ring Q) is a singular square.

Proof Given an E-square

[
e f
h g

]
consisting of n×n idempotent matri-

ces of rank k with coefficients in the division ring Q, we can, by conjugating
e by a change of basis matrix whose columns are a basis for the column space

of e followed by a basis for the nullspace of e, assume that e =

[
I 0
0 0

]
,

where I = the k × k identity matrix and the 0’s are matrices of 0’s of
the appropriate size. Then since ef = f, fe = e, etc., a routine calcula-

tion demonstrates that after the same conjugation we have f =

[
I b
0 0

]
,

h =

[
I 0
a 0

]
, and g =

[
I b
a ab

]
. Finally, computing g2 = g we find that

I + ba = I (in the upper left corner), so ba = 0.
We now show that for this quartet of idempotents there is a matrix η

which singularizes the E-square. Conjugating this matrix by the inverse
of our change of basis matrix gives a matrix singularizing the original E-

square. Writing η =

[
x y
z c

]
and computing the required (for left-to-right

singularization) products ηe = e, eη = f , etc., together with η2 = η, we find

that η must have the form η =

[
I b
0 c

]
with bc = 0, ca = a, and c2 = c;

further, any such matrix will be an idempotent singularizing the E-square.
We now proceed to construct the needed matrix c.

Recalling that column spaces always refer to right-linear combinations of
columns, note first that the condition ba = 0 is equivalent to b(col(a)) = {0},
which is equivalent to col(a) ⊆ null(b). Similarly, the requirement bc = 0
therefore requires col(c) ⊆ null(b).
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The condition ca = a implies that the columns of a are right-linear com-
binations of the columns of c, so col(a) ⊆ col(c). But conversely, since c is
idempotent, col(a) ⊆ col(c) implies that ca = a. To see this, since every
column of a is a right-linear combination of the columns of c we have a = cs
for some n × n matrix s. Then ca = c(cs) = (c2)s = cs = a, as desired.

So our requirements for the matrix c are: c is idempotent (c2 = c) and
col(a) ⊆ col(c) ⊆ null(b). Since every R-class of Mn(Q) contains an idem-
potent we can arrange to have col(a) =col(c) (and then col(c) =col(a) ⊆
null(b) is immediate).

This result enables us to complete the description of the Graham-Houghton
complex K = GH(E) of the set of idempotents E of the semigroup Mn(Q)
of n×n matrices over the division ring Q. The vertices consist of the equiv-
alence classes [v],[wT ] of sets of k linearly independent column (resp., row)
vectors, 0 ≤ k ≤ n; [v1] = [v2] iff v1 and v2 have the same column space,
i.e., v2 = v1x for some non-singular k × k matrix x; [wT

1 ] = [wT
2 ] iff they

have the same row space, i.e., wT
2 = xwT

1 for x ∈ GLk(Q). There is an edge
joining [v] and [wT ] iff wT v is a non-singular k×k matrix. A non-degenerate
4-cycle ([v1], [w

T
1 ], [v2], [w

T
2 ]) (so [v1] 6= [v2], [w

T
1 ] 6= [wT

2 ]) bounds a 2-cell iff
(wT

1 v2)(w
T
2 v2)

−1(wT
2 v1)(w

T
1 v1)

−1 = Ik. These constitute all of the edges and
2-cells in the complex.

Using this same notation, we can now describe the cover K̃n,k, defined
in section 3 (and referred to as C(G) there) corresponding to the D-class

of the rank-k matrices. K̃n,k has vertices the pairs (g, [wT ]),([v], h), where
g, h ∈ GLk(Q); since column spaces are right vector spaces, G acts on v on
the right, and so we will write the latter pairs as ([v], h). If for each equiv-
alence class we choose a (fixed) representative wT

0 , v0 then we can identify
(g, [wT ]) = (g, [wT

0 ]) with gwT
0 and ([v], h) with v0h

−1. As g, h range over

GLk(Q), this identifies the vertices of K̃n,k with the set of all rank-k k × n
and n× k matrices, respectively. In the notation of section 3, our morphism
ϕ : π1(GH(E)) → GLk(Q) is ([v], [wT ]) = wT

0 v0, where ([v], [wT ]) is the
edge from [v] to [wT ]. There is an edge from gwT

0 to v0h
−1 iff g(wT

0 v0) = h,
that is, (gwT

0 )(v0h
−1) = Ik, where Ik is the k × k identity matrix. So the

vertices of K̃n,k consist of the rank-k k × n and n× k matrices, and there is

an edge from wT to v iff wT v = Ik. Finally, there is a 2-cell with boundary

any 4-cycle in the 1-skeleton of K̃n,k.

Proof of Theorem 4.1. We denote by Kn,1 the subcomplex of K
spanned by the rank-1 vertices. By Theorem 2.2 and the Freeness Crite-
rion of section 3, we will be able to prove Theorem 4.1, if we can show that

the cover K̃n,1 is simply connected. By construction, K̃n,1 has vertex set
consisting of all nonzero n×1 (column) vectors v and all nonzero 1×n (row)
vectors wT . There is an edge v ↔ wT (consisting of a positively oriented
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edge from wT to v and its inverse edge from v to wT ) iff wT v = 1. Finally,

each 4-cycle in K̃
(1)
n,1 is the boundary of a 2-cell in K̃n,1.

To show that K̃n,1 is simply connected, that is, that π1(K̃n,1) = {1}, we

need to show that every loop in K̃n,1 is null-homotopic. More precisely,

choosing a maximal tree T in K̃
(1)
n,1, π1(K̃n,1) is generated by loops, one for

each edge ε not in T . The loops start at the basepoint, run out the tree to
one endpoint of ε, across ε, and then back in the tree to the basepoint. It
suffices to show that each of these loops is null-homotopic, and for this it
is enough to show that each edge ε is homotopic, rel endpoints, to an edge
path in T . It is this last statement which we will now prove. We will carry
out this verification in steps, in the process building the tree T in steps as
well.

The basic shortcut which we will use is the following observation. If

T ⊆ K̃
(1)
n,1 is a tree and ε1, . . . , εn, ε ∈ K(1) are edges with all endpoints lying

in T , and if each εi is homotopic in K, rel endpoints, to an edgepath in T ,
and ε is homotopic in K, rel endpoints, to an edgepath γ in T ∪ ε1 ∪ · · · ∪ εn,
then ε is also homotopic, rel endpoints, to an edgepath δ in T . This is
because we can concatenate a sequence of homotopies, each supported on
an edge εi lying in the edgepath γ, deforming εi into T , to further homotope
ε into T . The net effect of this observation is that, in the course of our
proof, anytime we have shown that an edge ε can be deformed into our tree
T , we can act as if ε were actually in T and build our further deformations
to map into the union of T and ε (and all other edges we have shown can
deform into T ). To reinforce this, we will talk of the edges of our tree as
being colored “green”, and say that any edge that we can deform into T has
turned green. Then to continue to move our proof forward we are required
only to show that any further edge can be deformed into the green edges. In
this way more and more edges become green; the proof ends when we have
shown that every edge can be turned green.

Our approach will be to choose nested collections Vi of vertices, and then,
inductively, extend the tree Ti−1 from a tree with the previous vertex set
Vi−1 to a tree whose vertex set is Vi, and show that the edges of the full

subcomplex of K̃n,1 with vertex set Vi can all be turned green. These edges
then can automatically be assumed to be green when moving on to the next
vertex set Vi+1; a homotopy rel endpoints into the tree Ti is also a homotopy
into the tree Ti+1. Our approach relies on the fact that the homotopies take

place across the 2-cells of K̃n,1, whose boundaries are the 4-cycles in K̃
(1)
n,1.

Any time that we can find a 4-cycle three of whose sides have turned green,
the square then provides a homotopy of the fourth side into the green edges,
enabling us to turn the fourth side green, as well. In what follows, we
will signify this by stating that the sequence of edges v1 ↔ v2 ↔ v3 ↔ v4

“yields” the edge v1 ↔ v4, meaning that it can now be turned green. Our
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proof essentially consists of finding a way to list the edges in each of our
full subcomplexes so that, for each edge ε outside of the tree Ti, there is
a square containing ε so that the other three edges of the square are each
either in the tree Ti or appear earlier in the list, and so, by induction, can
be assumed to have turned green. This enables us to turn the edge ε green,
as well, and continue the induction.

In what follows we denote by ~ei the vector with 1 in the i-th coordinate
and 0 in the remaining coordinates.

We start with the case n = 3; our last induction will be on n. Our first
vertex set V1 consists of the nonzero vectors v,wT all of whose entries are 0
or 1, with at least one 0. We build the tree T1 by adding the edge from every
wT with first coordinate 1 to ~e1 and then an edge from every v with first
coordinate 1 to ~eT

1 , and then add, for every vertex v,wT whose first non-0
coordinate occurs in the ith entry, i > 1, the edge from v,wT to ~e1 + ~ei

and ~eT
1 + ~eT

i , respectively. (Note that this has, implicitly, already used the
hypothesis n ≥ 3, so that ~e1 + ~ei ∈ V1.) Since, for every edge in T1, at
the time it is added exactly one of its (non-~e1) endpoints does not yet lie
in the part of T1 constructed up to that point, their union forms a tree, by
induction. The edges already in T1 are therefore

(1 0 0)↔ each of (1 0 0)T , (1 1 0)T , (1 0 1)T ,

(1 0 0)T ↔ each of (1 1 0) , (1 0 1),

(1 1 0)T ↔ each of (0 1 0) , (0 1 1) and

(1 1 0)↔ each of (0 1 0)T , (0 1 1)T ,

(1 0 1)↔(0 0 1)T and (1 0 1)T ↔(0 0 1).

By inspection, the remaining edges joining vertices in V1 are

(1 1 0)↔(1 0 1)T and (1 1 0)T ↔(1 0 1),

(1 0 1)↔(0 1 1)T and (1 0 1)T ↔(0 1 1),

(0 1 0)↔(0 1 0)T ,(0 1 1)T and (0 1 0)T ↔,(0 1 1),

(0 0 1)↔(0 1 1)T ,(0 0 1)T and (0 0 1)T ↔(0 1 1).

Then the following 4-cycles show how to turn each of these edges, in turn,
green:

(1 1 0)↔(1 0 0)T ↔(1 0 0)↔(1 0 1)T yields (1 1 0)↔(1 0 1)T

(1 0 1)↔(1 0 0)T ↔(1 0 0)↔(1 1 0)T yields (1 0 1)↔(1 1 0)T

(1 0 1)↔(1 0 0)T ↔(1 1 0)↔(0 1 1)T yields (1 0 1)↔(0 1 1)T

(0 1 1)↔(1 1 0)T ↔(1 0 0)↔(1 0 1)T yields (0 1 1)↔(1 0 1)T

(0 1 0)↔(1 1 0)T ↔(1 0 1)↔(0 1 1)T yields (0 1 0)↔(0 1 1)T

(0 1 1)↔(1 0 1)T ↔(1 1 0)↔(0 1 0)T yields (0 1 1)↔(0 1 0)T

(0 1 0)↔(0 1 1)T ↔(1 1 0)↔(0 1 0)T yields (0 1 0)↔(0 1 0)T

(0 0 1)↔(1 0 1)T ↔(1 1 0)↔(0 1 1)T yields (0 0 1)↔(0 1 1)T

(0 0 1)↔(0 1 1)T ↔(1 0 1)↔(0 0 1)T yields (0 0 1)↔(0 0 1)T

(0 1 1)↔(1 1 0)T ↔(1 0 1)↔(0 0 1)T yields (0 1 1)↔(0 0 1)T
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For our next collection V2 of vertices we add v,wT all with one entry 0,
another entry 1, and the remaining entry a 6= 0, 1. We extend T1 to a tree
T2 with vertex set V2 by adding the edge from each new vertex to the vertex
~ei or ~eT

i (as appropriate), where i is the coordinate with entry equal to 1. In
addition to the edges joining vertices in V1 and those in T2, the only edges
joining vertices in V2 are of one of the forms

(0 1 a)↔
(
1 0 a−1

)T

(0 1 a)↔(b 1 0)T (with b 6= 0)

(0 1 a)↔(0 1 − a 1)T

(together with pairs resulting from simultaneous permutation of the coor-

dinates of each side), since (0 1 a)↔ (x y z)T requires y + za = 1 with at
least one of y, z equal to 0 or 1. y = 0 implies the first case, y = 1 implies
z = 0 (and vice versa) and implies the second, and z = 1 implies the third.
For these edges the 4-cycles

(0 1 a)↔(0 1 0)T ↔(0 1 0)↔(b 1 0)T yields (0 1 a)↔(b 1 0)T

together with simultaneous permutations, by permuting throughout the 4-
cycle. The 4-cycle

(0 1 a)↔(0 1 0)T ↔(1 1 0)↔
(
1 0 a−1

)T
yields (0 1 a)↔

(
1 0 a−1

)T
,

where the edge (1 1 0)↔
(
1 0 a−1

)T
is a permutation of (0 1 1)↔

(
a−1 1 0

)T

(cycling to the left), which turned green in the previous step. We again have
all simultaneous permutations. Finally, the 4-cycle

(0 1 a)↔(1 1 0)T ↔(1 0 1)↔(0 1 − a 1)T yields (0 1 a)↔(0 1 − a 1)T

together with simultaneous permutations.

This deals with the full subcomplex on the vertices with at least one
0-entry and at least one 1-entry. The next collection V3 of vertices adds
a~ei, a~e

T
i with a 6= 1. We extend our tree T2 to a tree T3 by adding the edges

a~ei↔~eT
j + a−1~eT

i and a~eT
i ↔~ej + a−1~ei

where j is the smallest index 6= i. The edges still unaccounted for, running
between vertices of V3, are

a~ei↔a−1~eT
i , a~ei↔~ek + a−1~eT

i , and a~eT
i ↔~ek + a−1~ei (where k 6= i, j)

since a~ei↔x~eT
i + y~eT

j + z~eT
k and x~eT

i + y~eT
j + z~eT

k ∈ V3 requires x = a−1 and

{y, z} = {0, 1}. The 4-cycles

a~ei↔~eT
j + a−1~eT

i ↔~ej + ~ek↔~eT
k + a−1~eT

i ,

a~eT
i ↔~ej + a−1~ei↔~eT

j + ~eT
k ↔~ek + a−1~ei, and

a~ei↔~eT
j + a−1~eT

i ↔~ek + a~ei↔a−1~eT
i

demonstrate that these edges can be turned green.

For V4 we add the vertices a~ei + b~ej , a~e
T
i + b~eT

j with a, b 6= 0, 1 and i < j.
The vertex set V4 thus consists of all of the vertices with at least one 0-
entry. We extend the tree T3 to a tree T4 by adding the edges a~ei + b~ej ↔
a−1~eT

i and a~eT
i + b~eT

j ↔a−1~ei. The edges we need to turn green are of the

form a~ei + b~ej ↔ x~eT
i + y~eT

j + z~eT
k and a~eT

i + b~eT
j ↔ x~ei + y~ej + z~ek with
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za + yb + z0 = xa + yb = 1 (resp. az + by + 0z = ax + by = 1 ; we are
working over a division ring!) and at least one of x, y, z equal to 0. This
yields the four cases

(two coefficients equal 0): a~ei + b~ej ↔b−1~eT
j and a~eT

i + b~eT
j ↔b−1~ej ,

(x = 0): a~ei + b~ej↔b−1~eT
j + z~eT

k and a~eT
i + b~eT

j ↔b−1~ej + z~ek,

(y = 0): a~ei + b~ej↔a−1~eT
i + z~eT

k and a~eT
i + b~eT

j ↔a−1~ei + z~ek,

(z = 0): a~ei + b~ej ↔x~eT
i + y~eT

j and a~eT
i + b~eT

j ↔x~ei + y~ej

These can be turned green by using the 4-cycles
[y = 0 and i < k]: a~ei+b~ej ↔a−1~eT

i ↔a~ei↔a−1~eT
i +z~eT

k (and transposes),

[y = 0 and i > k, so k < i < j]: a~ei + b~ej ↔a−1~eT
i ↔a~ei + ~ej↔z~eT

k + ~eT
j ,

and so a~ei + b~ej ↔z~eT
k + ~eT

j ↔z−1~ek↔a−1~eT
i + z~eT

k (together with

transposes),
[two coefficients 0]: a~ei + b~ej ↔ a−1~eT

i + ~eT
k ↔ b~ej + ~ek ↔ b−1~eT

j (and

transposes),
[x = 0]: a~ei + b~ej↔b−1~eT

j ↔b~ej↔b−1~eT
j + z~eT

k (and transposes), and

[z = 0]: a~ei +b~ej↔a−1~eT
i +~eT

k ↔y−1~ej +~ek↔x~eT
i +y~eT

j (and transposes).

Finally, V5 = K̃
(0)
3,1 , that is, we add the vertices v,wT with all entries

non-zero. We extend T4 to a tree T5 by adding the edges

(a b c)↔
(
a−1 0 0

)T
and (a b c)T ↔

(
a−1 0 0

)
.

Then the 4-cycles

(a b c)↔
(
a−1 0 0

)T
↔(a b 0)↔

(
0 b−1 0

)T

yield (a b c)↔
(
0 b−1 0

)T
, and

(a b c)↔
(
a−1 0 0

)T
↔(a 0 c)↔

(
0 0 c−1

)T

yield (a b c)↔
(
0 0 c−1

)T
(together with transposes).

Then if (x y z) has z = 0 and xa + yb = 1 with x, y 6= 0, the 4-cycle

(a b c) ↔
(
a−1 0 0

)T
↔ (a b 0) ↔ (x y 0)T yields (a b c) ↔ (x y 0)T (the

transpose relation is similar),
and a similar argument yields the cases where the second or first entry is 0.
Finally, if xa + yb + zc = 1 with x, y, z 6= 0, then the 4-cycle

(a b c)↔
(
a−1 0 0

)T
↔

(
a b + y−1zc 0

)
↔(x y z)T

yields (a b c)↔(x y z)T (and the transpose relation is, again, similar).

With this, we have constructed a maximal tree T = T5 in K̃
(1)
3,1 , and have

shown how to homotope every edge in K̃
(1)
3,1 , rel endpoints, to an edge path

in T . Consequently, K̃3,1 is connected and simply connected.

To finish our argument, we show how to extend this result to arbitrary
n ≥ 3. We argue by induction. The base case n = 3 is established above.

For the inductive step, we assume that we have shown that K̃n−1,1 is simply-

connected. In particular, we have constructed a maximal tree Tn−1 in K̃
(1)
n−1,1
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and have shown that each of the edges of K̃
(1)
n−1,1 not in Tn−1 can be deformed,

rel endpoints, in K̃n−1,1, into Tn−1.
By appending 0’s to the end of every column of the vectors v,w labelling

the vertices v,wT of K̃n−1,1 (yielding matrices v+, w+) and noting that
wT

+v+ = 1 iff wT v = 1, the map v 7→ v+, wT 7→ wT
+ induces an embed-

ding of K̃n−1,1 into K̃n,1, and its image is the full subcomplex of K̃n,1 on the

vertex set V6 = the image of K̃
(0)
n−1,1. The image of the tree T is a tree T6

which provides the starting point for constructing the needed tree in K̃n,1.

To build our tree T7 we add, for the vertices
(
a1 . . . an

)
,
(
a1 . . . an

)T

with an 6= 0 and at least one other entry aj 6= 0 (we may assume j is the

smallest such index), the edges
(
a1 . . . an

)
↔a−1

j ~eT
j and

(
a1 . . . an

)T
↔

a−1
j ~ej , and then add the edges an~en↔~eT

1 +a−1
n ~eT

n and an~eT
n ↔~e1 +a−1

n ~en for

each an 6= 0. This gives a maximal tree in K̃n,1; by our inductive step we

know that every edge in the image of K̃
(1)
n−1,1 is homotopic, rel endpoints, to

an edge path in T7, and so can be assumed to be green.

We now work our way through all of the remaining edges of K̃n,1 in steps,
to show that they can all be turned green. If a vertex v,wT has two or more
entries aj , ak 6= 0, for j, k < n (we may assume j is the smallest such index),
then the 4-cycles

v↔a−1
j ~eT

j ↔aj~ej + ak~ek↔a−1
k ~eT

k and wT ↔a−1
j ~ej ↔aj~e

T
j + ak~e

T
k ↔a−1

k ~ek

enable us to make the edges v ↔ a−1
k ~eT

k and wT a−1
k ~ek green, and allowing

us to base our further arguments off of any non-zero entry of v,wT (other

than the last entry). If v =
(
a1 . . . an

)
↔

(
x1 . . . xn−1 0

)T
= wT is

an edge, then xiai 6= 0 for some i, and the 4-cycle

v↔a−1
i ~eT

i ↔
(
a1 . . . an−1 0

)
↔wT

enables us to turn the edge v↔wT green, and a similar argument will allow

us to turn the edges v =
(
x1 . . . xn−1 0

)
↔

(
a1 . . . an

)T
= wT green.

With this we can make every edge of K̃n,1 joining a vertex of K̃n,1, other

than the vertices an~en, an~eT
n , to a vertex in the image of K̃

(0)
n−1,1, green. Note,

however, that there are no edges between the vertices an~en, an~e
T
n and the

vertices in the image of K̃
(0)
n−1,1.

For every i > 1 the 4-cycle an~en↔~eT
1 +a−1

n ~eT
n ↔~e1+~ei↔~eT

i +a−1
n ~eT

n makes
an~en ↔~eT

i + a−1
n ~eT

n green, and a similar argument turns an~eT
n ↔~ei + a−1

n ~en

green. Then for i 6= j, i, j < n,

~ei + an~en↔~eT
i + ~eT

j ↔~ej↔~eT
j + a−1

n ~eT
n

turns ~ei + an~en↔~eT
j + a−1

n ~eT
n green. Then (using the fact that n ≥ 3)

an~en↔~eT
1 + a−1

n ~eT
n ↔~e2 + an~en↔a−1

n ~eT
n
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turns an~en ↔ a−1
n ~eT

n green. If one of x1, . . . xn−1 is non-zero (say xi, and
then choose j 6= i, j < n), then the 4-cycles

an~en↔~eT
j + a−1

n ~eT
n ↔x−1

i (1 − xj)~ei + ~ej ↔
(
x1 . . . xn−1 a−1

n

)T
and

an~eT
n ↔~ej + a−1

n ~en↔x−1
i (1 − xj)~e

T
i + ~eT

j ↔
(
x1 . . . xn−1 a−1

n

)

together with the previous step enable us to make every edge with vertex
either an~en or an~eT

n green.

All that is left now is to turn the edges v =
(
a1 . . . an

)
↔

(
x1 . . . xn

)T
=

wT with an, xn 6= 0 green. By the immediately preceding step we may also
assume that xi, aj 6= 0 for some i, j < n. If i 6= j then the 4-cycle

v↔a−1
j ~eT

j ↔aj~ej + x−1
i (1 − ajxj)~ei↔wT

turns the edge v ↔ wT green. If we cannot find such a pair of distinct
indices i, j then our edge must be of the form ai~ei + an~en ↔ xi~e

T
i + xn~eT

n

with xiai + xnan = 1 and ai, xi, an, xn 6= 0. Then (choosing a j 6= i, n) the
4-cycle

ai~ei + an~en↔a−1
i ~eT

i + ~eT
j ↔x−1

i ~ei + (1 − a−1
i x−1

i )~ej ↔xi~e
T
i + xn~e

T
n

demonstrates that this final collection of edges can be made green.

Therefore, every edge of K̃
(1)
n,1 is homotopic, rel endpoints, to an edge path

in T7, and K̃n,1 is simply connected. This finishes the inductive step; so for

every n ≥ 3, K̃n,1 is connected and simply connected, and so is the universal
covering space of Kn,1. This completes the proof of Theorem 4.1.

5. Closing Remarks

Theorem 4.1 provides a natural example of a torsion group that arises as
a maximal subgroup of the free idempotent generated semigroup on some
(finite) biordered set, answering a question raised in [5]. After the results of
this paper were announced, Gray and Ruskuc [8] proved that every group
arises as the maximal subgroup of some biordered set overriding this partic-
ular example. We remark that if e is an idempotent matrix of rank n− 1 in
E = E(Mn(Q)), then the maximal subgroup of IG(E) with identity e must
be a free group by Theorem 2.2, since there are no idempotents available to
singularize a square consisting of rank n− 1 idempotent matrices. Thus the
maximal subgroup of IG(E) corresponding to an idempotent of rank n − 1
is not isomorphic to GLn−1(Q).

Based on experimental evidence, we conjecture that the maximal sub-
group of IG(E) with identity an idempotent matrix of rank k < n − 1 is
GLk(Q), at least if k < n/2 and n ≥ 3, but this problem remains open.

It is plausible that when k < n − 1 the subcomplex K̃n,k of K spanned by
the vertices of rank k is simply connected. The methods in the proof of
Theorem 4.1 in the present paper seem difficult to extend. However, there
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is a lot of structure to the complexes that we have not exploited. The con-
nections to Grassmanians - the vertices of Kn,k are (two sets of) the points

of the Grassmanian Gn,k of k-planes in Qn, and the vertices of K̃n,k are (two
sets of) the points of the universal bundle over Gn,k - seem worth exploring
further, and we expect to consider these ideas in a subsequent paper.
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