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laminations with no holonomy

Mark Brittenham

In [Br1] we showed how, given a triangulation � of a 3-manifold M, to use an essential

lamination L in M to �nd a (usually di�erent) essential lamination L0 which is in Haken

normal form with respect to the triangulation � . This involved an (in principle) in�nite

sequence of isotopies, to `grow' L0 out of stable portions of L. In this paper we show that

if the lamination L has no holonomy (see [Re]), then L0= L; that is, this in�nite isotopy

is in fact a �nite one - the isotopy process halts after �nite time.

Theorem 1: If � is a triangulation of the 3-manifold M, and L �M is an essential

lamination in M with no holonomy, then L may be isotoped to be in Haken normal form

w.r.t. � .

Hatcher [Ha] has shown that an incompressible measured lamination can be put into

Haken normal form w.r.t. a triangulation. Since such laminations have no holonomy, the

above result gives a di�erent proof that these laminations can be put into normal form.

1. Idea of the proof

We will say that an essential lamination L�M is in Haken normal form w.r.t. a

triangulation � of M if L intersects � transversely, and, for every 3-simplex �3 of � , L\�3

consists of normal disks. In [Br1], we de�ned a sequence of isotopies which serve as the

most `natural' way to attempt to push a given essential lamination L, transverse to a
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triangulation, into Haken normal form. For completeness, we give a description of this

procedure here.

The idea is to work a single 3-simplex �3 at a time, and then create the sequence

of isotopies by running cyclically through the 3-simplices �3
1,: : :,�

3
n of � . Each isotopy

in the sequence is itself a �nite sequence of `simple' isotopies, whose sole purpose is to

push all of the `problems' with L\�3 out of �3, and, in so doing, making L meet �3 in a

collection of normal disks. More precisely, each simple isotopy is either a compression or

a @-compression.

A compression consists of compressing L along a family of loops of L\@�3, which,

after throwing out the 2-spheres that this must inevitably create, can be thought of as an

isotopy of L. For simplicity we adopt the strategy of thinking of compression as a surgery

along all of the loops of L\@�3, as in Figure 1a. It should be clear, though, that this

process, applied to a normal disk (and, in fact, to any disk leaf of L\�3), gives a sphere

in the 3-simplex, which we throw away, and the same normal disk back again. So normal

disks only `wiggle' during a compression; a more careful approach would allow us to insist

that normal disks remain �xed, while all those loops needing compressing (i.e., those that

do not bound disk leaves of L\�3) are compressed. A @-compression is an isotopy which

pushes L along a disk in �3, whose boundary consists of an arc in a leaf of L and an arc

in � (1); see Figure 1b.

A �nite application of these two isotopies will make L meet �3 in a collection of

normal disks. We denote the result of the simple isotopies making Ir�1(L) meet the r-th

3-simplex in normal disks (where, since we continue through the 3-simplices cyclically, we

really mean r(mod n)) Ir�1;r, and set Ir�1;r � Ir�1 = Ir. So Ir(L) is the result of isotoping

L to meet the �rst r 3-simplices, in turn, in normal disks.
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Figure 1

What makes this sequence of isotopies useful, and the main property that both the

proof in [Br1] and the proof we give here exploit, is that these isotopies are not altering

L\� (1) in any signi�cant way - for each of the isotopies I, P = I(L)\� (1) �L\� (1), and I

is constant on P. In other words, the isotopy I can only remove points from L\� (1), not

create new ones, and it doesn't move any of the points it doesn't remove. This is easily

seen to be the case by considering the e�ect of each of the simple isotopies on L\� (1).

This leads us to consider the set of points C�L\� (1) , the set of stable points, which

never move under any of the isotopies. C is the intersection of the nested sequence of

closed sets Ir(L)\� (1). The proof of [Br1] was to show that around each of these stable

points, stable normal disks would grow; at some point, the normal disk containing a stable

point would itself stabilize, and remain �xed under all further isotopies. In other words, a

new lamination would grow out of these stable points, being created from the `eventually

stable' parts of the original lamination L. However, these eventually stable parts would

not themselves form a lamination. The set X of stable disks meets � (1) in the closed set

C, but X itself need not be a closed set, the problem being that some normal disks are

`missing', where di�erent normal disk types in a 3-simplex come together; see Figure 2.

Much of [Br1] involved very carefully turning X into a lamination. The main purpose of

this paper is to show that in the absence of holonomy, this last part will not be needed.

This will follow readily from the following:

Figure 2

Proposition 2: If L has no holonomy, then the set of points B = (L\� (1))nC is a closed

subset of (L\� (1), hence of) � (1).
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The proof of this proposition constitutes the bulk of this paper.

Before proving the proposition in sections 2 and 3, we will show how this result

implies the main result of the paper. The points of B=(L\� (1))nC are, by de�nition, the

unstable points of the isotopies, so each is erased from L\� (1) at some �nite stage Ir of the

isotopies. But since B is a closed set, so is every Br= (Ir(L)\� (1))nC = Ir(L)\((L\� (1))nC)

= Ir(L)\B �� (1). Also, the Br are nested, since the Ir(L)\� (1) are, and \((Ir(L)\� (1))nC)

= (\(Ir(L)\� (1)))nC = CnC = ;, so since � (1) is compact, we must have (Ir(L\)� (1))nC =

; for some r, i.e., Ir(L)\� (1)�C, so,since C�Ir(L)\� (1), Ir(L) = C. So all of the unstable

points disappear at some �nite time r. But then:

Lemma 3: Ir+n(L) is in normal form w.r.t. � .

Proof: We need to show that for each 3-simplex �3
i , i=1,: : :,n, of � , Ir+n(L) meets �3

i in

disks, and that each disk of Ir+n(L)\�3
i meets each 1-simplex of �3

i at most once. For

the �rst, if some circle of Ir(L)\@�3
i doesn't bound a disk of Ir(L)\�3

i , then compressing

along (a smaller sphere parallel to) @�3
i must create spheres in Ir(L) that get thrown away,

as in Figure 1a. These newly created spheres cannot meet � (1); if they did, removing them

would remove points of Ir(L)\� (1)= C, contradicting the fact that these are all stable

points of the isotopies. After doing this for each 3-simplex, we will succeed in making

Ir+n(L) meet each 3-simplex in disks, provided we have not done any @-compressions in

the meantime. But a @-compression would remove points of Ir(L)\� (1) = C, which is

impossible, since these points are stable. So Ir+n(L)\�3
i consists of disks. Each of these

disks must then meet each 1-simplex of @�3
i at most once, since if they didn't we would

�nd a @-compression to carry out, which, again, would be forced to remove stable points,

an impossibility. So Ir+n(L) is in Haken normal form w.r.t. � .

2. The limiting surface
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We wish to show that if L is an essential lamination with no holonomy and Ik is the

sequence of isotopies attempting to put L into Haken normal form w.r.t the triangulation

� , then B = (L\� (1))nC is a closed set, i.e., (since L\� (1)= B[C is closed) no point of C

is a limit point of B. We will argue by contradiction. Let A�C be the set of stable points

(i.e., points of C) that are limited on by unstable points (i.e., points of B). In other words,

A is the set of limit points of B which are contained in C (i.e., A = B\C). We will show

that in general this is a �nite set, hence is contained in a �nite number of stable disks of

some Ik(L), the union of which is then a compact surface S. Then we will show that it is

impossible to have both A6= ; and have no holonomy around every loop in S.

Proposition 4: A is �nite.

Proof: The idea behind the proof is that our `problems' cannot get too close to one

another. The main tool in showing this is:

Lemma 5: If L�N(W) is an essential lamination carried by the essential branched surface

W, and � is an arc of an I-�ber of N(W) whose endpoints are contained in a leaf L of L ,

then � cannot be homotoped rel endpoints into L.

Proof: This follows immediately from [G-O, Theorem 1(d)], since � is an e�cient arc for

W.

We make use of this lemma by choosing an essential branched surface W carrying L

and transverse to � (1), so that N(W)\� (1) consists of a �nite number of arcs, each contained

in an I-�ber of N(W). Then we choose a number � so that any two points of L \� (1) within

� of one another are contained in the same I-�ber of N(W)\� (1). This then means that

no subarc of � (1) joining points of L\� (1) and of length less than � can be homotoped rel

endpoints into a leaf of L, by the lemma.
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Now suppose that A�� (1)is in�nite; it then meets some 1-simplex �1
i in an in�nite

set, so A has a limit point x2�1
i . Because A�C and C is closed, x2C. So there exist

points a; b; c2A , all in �1
i , which are within �/2 of x, hence are within � of one another;

see Figure 3. We may assume b is between a and c on �1
i . Then since b is a limit point of

B, there are points of B lying arbitrarily close to b, on one side or the other, say the a-side.

So in particular there is a point y of B between a and b. Since it is unstable, this point y

must be removed at some stage of the isotopies, say in the isotopy Ik;k+1. This point then

is either removed by a @-compression, or by removing a sphere surgered o� of Ik(L); see

Figure 3.

Figure 3

But in the �rst case we then get an arc in a leaf of Ik(L), and in some 3-simplex of

� , one of whose endpoints is y, realizing the @-compression. This arc must have its other

endpoint z also in the interval between a and b, since otherwise the interval between y and

z will contain either a or b. But then the @-compression will erase everything in Ik(L)\� (1)

between y and z, which is impossible, since this will include either a or b, which are both

stable (hence cannot be erased). The interval between y and z consequently has length

less than �, so the @-compressing arc in Ik(L) between y and z gives an arc which, 
owing

back by the isotopies used to create Ik, gives an arc in L which is homotopic rel endpoints

to a subinterval of �1
i of length less than �, contradicting Lemma 5.

In the second case the point y is eventually (after a surgery) contained in a sphere

S2 �Ik;k+1(L) which we are going to erase. But since M is irreducible [G-O], this sphere

bounds a ball B3; in particular, this sphere separates M. Both a and b must be in the

same component of MjS2, since otherwise one of them is in B3, and hence is contained in a

2-sphere, since after a surgery the lamination consists of something isotopic to L together
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with a collection of spheres, and no leaf of L can be contained in the interior of a ball.

But this sphere will be erased, contradicting the fact that a and b are both stable. So

the sphere leaf containing y does not separate a and b, so it must meet the interval of �1
i

between a and b an even number of times; in particular, it meets this interval in a point

z 6= y s.t. the interval between y and z is entirely contained in B3. But then we can choose

any arc in S2 joining y and z and missing the (images of the) compressing disks used to

cut S2 o� of Ik(L); this is possible since the compressing disks are just `fat points' in S2.

We then get an arc (which can be thought of as lying in Ik(L)) which is homotopic rel

endpoints to the interval of �1
i between y and z, since both arcs are contained in the ball

B3. Since the interval between y and z is contained in the interval between a and b, it has

length less than �. But this once again contradicts Lemma 5.

Therefore, in either case we arrive at a contradiction; therefore A is �nite.

Note that the proof aboves tells us also that any two stable points that are less than �

apart can never have any unstable points between them - such points could never be made

to go away. This implies in particular that the points of A are isolated in C on the sides

in which B limits on them.

Now since A is a �nite set of stable points, it meets only �nitely-many stable disks; we

can, for convenience, split L open along the (�nitely-many) leaves whose image under the

isotopies contains these disks. This is to insure that these disks are limited upon on only

one side by unstable disks; we could instead, in what follows, `double-count' any of the

points of A that are limited upon on both sides by points of B, as well as the stable disks

that contain them. The union of the disks containing this doubled version of A is a (not

necessarily connected) compact surface S, possibly with points on it's boundary identi�ed;

see Figure 4. This surface S is contained in Ik(L) for some k, since �nitely-many stable
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disks will stabilize in �nite time. Some points x of S\� (1) are not in A; but since such

a point is in a stable normal disk D that does contain a point y in A, it must be a limit

point of L\� (1) from the side that y is limited on. This is because, when the lamination is

normal in the 3-simplex containing D, we must see a sequence of normal disks limiting on

D from the side that y is limited upon, since we see this at one of its corners. Therefore x

must be a limit point of C. But since on one end of D y is a limit point of B while on the

other end x is a limit point of C, we can conclude that x lies at the interface of di�erent

stable normal disk types, as in Figure 2. This is because the points of C limiting on x are

eventually contained in stable disks. These stable disks cannot be limiting down on D,

since then y would be limited upon by points of C, contradicting the fact that it is limited

upon by B. So these stable disks are not normally isotopic to D (i.e., they are not of the

same normal disk type as D).

Figure 4

Points of A are interior points of S, by the de�nition of S; S contains all of the (stable)

normal disks that contain these points. So the only way that the compact surface S can

fail to be closed is if it has boundary lying at the interfaces of di�erent stable normal

disk types (in the language of [Br1], if we were to take the closure X of the union X of the

stable disks, its singular set would contain @S). What we will now show is that this picture,

together with the fact that the leaves of L near S contain unstable points, and so keep

being pushed and are stripped away, is inconsistent with the hypothesis of no holonomy

(in L, hence) around loops in S.

3. The mechanics of in�nite pushability

Now we wish to introduce into this setting the fact that L has no holonomy, so there is,

in particular, no holonomy in Ik(L) along S. Therefore, leaves of Ik(L) passing su�ciently
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close to S meet the normal fence over S in surfaces, made up of normal disks, which are

homeomorphic to S (see [Re]), and, in fact, the normal projection of each of these surfaces

onto S is a homeomorphism. What we must now ask ourselves is: How can any of these

surfaces near S move? We know they must, by hypothesis (they meet � (1) in points of B,

because A6= ;), but, it turns out, they can't. There is no way to start.

@S6= ;, since otherwise S is a leaf of Ir(L), so the nearby leaves lying above S are

(homeomorphic to S, so) are compact and made up of normal disks. But they are then

stable, since the isotopies do not move normal disks. This contradicts the fact that they

meet � (1) in points of B.

@S meets � (1) in a �nite number of points, all limited upon by points of C. For each,

we can choose a � <� so that there is a point of C within � of the point on the limited

sided of S. Then choose a number � less than all of these �'s so that leaves passing within

� of S meet the normal fence over S in surfaces homeomorphic to S. Then the boundaries

of these surfaces are all stable; they meet � (1) in points of C; see Figure 5. This is because

the points of @S\� (1) are all in C, and are limited upon by points of C, and once we are

within � of @S\� (1), we are between two points of C which are less than � apart, so we

must be in C by the argument above.

Figure 5

So the boundaries of these nearby surfaces are all stable; they never move. So how

can any of the surfaces move? They consist of normal disks, since they are parallel to S

and lie close to S, which consists of normal disks. They cannot be initially pushed by a

@-compression - this requires the points being erased to be contained in something which

both isn't normal, which means we're at the boundary of the surface, and unstable, which

the boundary isn't. So the only way that these surfaces can move is by compression. That
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is, we must be surgering along a sphere parallel to some @�3
i and removing the spheres in

Ik(L) this creates. These removed spheres must then include pieces of our surfaces near S -

otherwise nothing near S would move. But the loops that we are compressing along cannot

meet any of these surfaces, because these surfaces are made up of normal disks; when you

compress a normal disk, the normal disks remain, so nothing would be removed from near

S. So it must be the case that a surface lying above S ends up completely contained in

spheres that are erased. But then their boundaries also end up in these spheres, so are

erased. This is impossible, since the boundaries contain stable points.

So there is no way to move these surfaes lying above S, so they are stable, but this

contradicts the fact that they meet � (1) in unstable points. This gives us the required

contradiction, so A = ;; (L\� (1))nC is closed.

4. Closing observations

What we have shown is that in the absence of holonomy, there is no mechanism

for removing those unstable portions of the lamination L which might limit on stable

disks. We include a �gure (see Figure 6) which shows that this need not be the case for

a lamination with non-trivial holonomy; one can, with holonomy, continually recreate @-

compressing disks, for example, which will provide a way to keep removing unstable points

from the vicinity of stable points. The �gure shows how a portion of the lamination might

intersect the 2-skeleton of � ; we do not know if this particular �gure can be realized by

an essential lamination in a 3-manifold; although the `1-dimensional lamination' in the

2-complex pictured has �1-injective, end injective leaves.

Figure 6
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It is worth noting that the techniques of this paper apply equally well to the process

[Br2] of �nding an essential lamination in normal form w.r.t. a regular cell decomposition

of M. If the lamination one starts with has no holonomy, then at each stage of the in�nite

sequence of isotopies in [Br2] the lamination we get is isotopic to the one we started with,

and each isotopy �nishes in �nite time. Therefore, the in�nite collection of isotopies is

really just a single in�nite isotopy attempting to put the lamination into normal form

w.r.t. the cell decomposition. But then the arguments above can be applied to the set

of stable points (of this single sequence of isotopies) which are limited upon by unstable

points, to show that such points do not exist - therefore, eventually the isotopies stop doing

anything, and our lamination is in normal form w.r.t. the cell decomposition. So we have:

Theorem 6: If M is a 3-manifold with a regular cell decomposition fB3
kg, and L is an

essential lamination in M with no holonomy, then L is isotopic to a lamination which is in

Haken normal form w.r.t. the cell decomposition.

The arguments given here also provide us with a picture of how, in general, the

sequence of isotopies, which �nds a lamination in Haken normal form w.r.t a triangulation,

behaves. Eventually, all unstable points become concentrated around the compact stable

surface S; all other unstable points, by the argument of section 1, disappear in �nite time,

since C together with a small open (in L\� (1)) neighborhood of A gives a relatively open

set in L\� (1) whose complement is then relatively closed and consists of unstable points,

which therefore all disappear in �nite time. So all of the `action' of the isotopy becomes

concentrated in a compact piece of MjX (in the terminology of [Br1]).

With this better picture of the isotopy process it might be possible to `�nd' the limiting

normal lamination in �nite time, and, usually, this should perhaps be a sublamination of

L. In Figure 6, for example, the `boundary' of the �gure is a sublamination that is stable.
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One problem is that this isotopy process will perform `Reeb surgery' on a Reeb annulus

lying in the 2-skeleton of M which also misses the 0-skeleton (so long as it remains, i.e., the

boundary of the annulus is stable); see Figure 7. So, for example, we can create `accidental'

Reeb components for the limiting normal lamination, by continually pushing the end of

a `half-Reeb' component (i.e., the neighborhood of a loop, in a leaf, having non-trivial

holonomy) in�nitely often; see Figure 8. The resulting normal lamination, with the Reeb

component thrown away, is isotopic to the original one. The situation pictured here is

easy to arrange, for any lamination with non-trivial holonomy, by choosing the right (or

wrong?) triangulation of the ambient manifold. So the (admittedly simple) isotopy process

we employ here cannot always `�nd' a normal sublamination on its own, in �nite time.

Figure 7 Figure 8
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