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We've now seen that if x is a norm, then B X and B.. are convex polyhedra, and B..

is in fact the convex hull of the linear functions defining the faces of B.. This is actually

true in general, for x a semi-norm; this can be seen fairly quickly by looking at the norm

induced from x. The set of points where x is 0 is a linear subspace X of Rn, so~
X
decends

to a norm on the quotient vector space Rn /X. This is still an integral norm (properly

interpreted) - if X has dimension k, then X intersects Zn in a lattice of rank k (this follows

easily from the fact that X is the R-span of the points in the integer lattice on which x is

zero). Therefore Rn/X still contains a naturally-defined integer lattice (the image of the

one in Rn) on which x is integral. So the proof we gave goes through to show that the

unit ball downstairs is a convex polyhedron, so the unit ball upstairs is its inverse image

under a linear map, hence a convex (though non-compact) polyhedron.

Exercise: Show that the vertices of B X each have rational coordinates (Hint: each is

determined by what top-dimensional faces it sits in, which gives linear constraints).

Next we will compute some specific examples of x and B,, for some knots and links. In

general this can be a nearly impossible task, since we would need to be able to determine

that least genus surface representing homology classes, which in practice is a very difficult

task. But we will see that if our manifold has many symmetries, we can exploit this to help

us in determining the norms of various elements, since they are reflected in symmetries of

the norm itself (and hence of its unit ball).

We will draw our examples from link exteriors in S 3 . (Consequently, we will take as

known some of the basic machinery of knot theory). Using some duality theory from homol-

ogy, we have that, for any link L=LlU . . . ULk in S3 , H2(S3\N(L),c9N(L))"-_'Hi(S3\N(L))-_'

H1(N(L)), where this last isomorphisnm is by Alexander Duality. In fact, the composite

isomorphism is rather easy to describe - a 2-dimensional homology class is sent to the ho-

mology class in N(L) of its boundary. But HIN(L)'-_"Zk, on generator for each component

of the link, and if we orient each link, we can make a natural identification of H 1 N(L) with

Zk. by choosing as generator the oriented circle itself.

Now for knots, the Thurston norm is fairly boring. It is determined by the value of

x(K) (abusing notation and identifying a 2-dimensional homology class with its bound-

ary), so is a norm iff x(K):~0. But the only surface with X_(S)=0 and homologically

having boundary K is a disk (annuli have 2 boundary components (parallel in 9N(K)),

so could only represent an even multiple of the generator), so x(K)=0 iff K is the un-

knot. But then if K is not the unknot, then ±K/x(K) are the only elements of norm 1, so

BX=[-K/x(K),K/x(K)]CR.
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So if we really want to get some interesting examples, we need a link with more than

one component. But if we also want to actually be able to calculate x effectively on Hi (L),

in most cases we are going to need a link with alot of symmetry.

To see how symmetry might help, suppose h:M--+M is a self-homeomorphism of a

manifold M. Then because of the way x is defined, x(a)=x(h*(a)) for all aEH2(M, 8M; R).

This is because if S is a surface of minimal X_ representing a, then h(S) (has the same X_

and) is a minimal X_ representative for h„(a); otherwise, h„(a) has a surface T of smaller

X_, and then h -1 (T) represents a amd has smaller X_ than S, a contradiction. Therefore,

the symmetry of the manifold is reflected in a symmetry of the norm, and hence in a

symmetry of the unit ball. This fact can actually be useful for computational purposes.

Take for the example the Whitehead link L (see figure below), with an orientation

on each component. Label the components Li,L2 respectively. Then there are several

symmetries of L that we can fairly easily find. By rotating 180 degrees around a line

through the center of the figure and our eye, we can take L1 to Li and L2 to -L2 (meaning

L2 with the opposite orientation). By rotating about the vertical line through the center,

we can take (Li,L2) to (-L 1 ,L2 ). Finally, by turning our picture of L inside out (turning

L2 into the round circle) we can see that we can take (Li,L2) to (L2,L 1 ). Therefore the

group generated by these symmetries (which is the dihedral group D 4) acts as symmetries

of x. So we can permute Li and L2 and introduce signs at will, without affecting the value

of x. This allows us to effectively calculate x.

L, ti, -i

Start with x(LI) (=x(L2)). We need to find a surface whose boundary represents L1

in H1(N(L)). Inspection quickly turns up one of the surfaces S,T below; the first is a once-

punctured torus, and the second is a twice-punctured disk. The second is really no better

than the first - it's obtained by pinching off the annular piece following the knot. But the

second can be a very useful construction to remember in other situations - it represents

the same hology class, because the two small loops are meridians, so bound disks in N(L),

so are zero in H1(N(L)) - they contribute nothing. So we can introduce them (or live with

them) when looking for our surfaces without introducing any problems.



X_(S)=X_(T)=1, so we immediately know that x(L1)<1. But if x(L,)=0, then there

is a surface F representing Ll with X_(F)=0, hence is a disk or an annulus. But L1 can't

bound a disk, since this would imply the Ll could be shrunk to a point in the complement

of L2, and hence L is the unlink (which we take as given (i.e., use other machinery) to be

untrue). It also can't be an annulus - if it were, one component is LI, so the other must

be a meridian of N(L2) (a trivial loop in ON(L) could be pushed off, reducing to the case

of a disk). If we glue on a meridian disk, we then get a surface (a disk) in S 3 bounded by

L1 and intersecting L2 exactly once. This, however, implies that L1 and L2 have linking

nmuber fl; but the original surface S (or T with the two meridians capped off' by disks)

shows that they have linking number 0, a contradiction. So x(L1)=x(L2)=1.

From this we can conclude that x(Li+L2)=2; for if not, convexity says it must be 1 or

0. 1, however, can be quickly ruled out, because any surface representing L1 +L2 must have

an even number of (essential) boundary components (hence an even X_). This is because

on each boundary torus we have a collection of parallel loops, whose sum represents a

generator; an even number would represent an even multiple of the generator. So there are

an odd number of loops on each component, hence an even total number of them. So we

would have to have x(Li +L2)=0; but since we already know that x(L 1 +L2)=x(L1-L2 ),

we would then have that 2=x(2L1)<x(Ll+L2)+x(Ll-L2)=0+0=0, a contradiction.

This tells us then that x((1/2)±Li±L2)=1 (where the two signs may be chosen inde-

pendently), so we have found eight points on the boundary of the unit ball B,, - see the

figure below. But it is easy to see that the only convex set in R2 that contains these points

on its boundary is the diamond - if it contained any other point (by symmetry, in the first

quadrant, say), then by taking the convex hull of the diamond and this point, the point

(1/2,1/2) would end up in the interior of B,t , a contradiction.

With this information, we can easily calculate the Thurston norm of any element of

H2 (M, aM; R); x(aL,+bL2 )=Ial+lbl (prove it!).

C
Notice that we in fact prove d that BX as a polyhedron, in this case, instead of using

it to help us find out what it looked like. This is something that can be used in general.

If you already have (somehow) a collection of points which you know are in aB,, and they

include both a collection (the vertices) of points P and a point in the interior of each of



the top-dimensional faces of the convex hull of P, then since the pal

	

convex set which

contains all of these points in its boundary IS the convex hull of P, this must be exactly

the unit ball of the norm.

Let's apply this same sort of reasoning to another example, the Borromean rings (see

figure). Each component bounds a once punctured torus that misses the others (which we

could also think of as twice-punctured disks) - see figure - so since the link is (we assume)

non-trivial, and he linking numbers of each pair of components is 0, we can conclude as in

our previous example that x(L1)=x(L2)=x(L3)=1.

Again, the Borromean rings has a great deal of symmetry, which we can exploit in our

calculations. If we rotate the picture around its center, we can permute the components

(1,2,3)H(2,3,1) and to (3,1,2). By rotating around lines in the plane which are vertical,

and inclined 120 degrees, we get the permutations (1,2,3)H(-1,-3,-2), (-3,-2,-1), and

( -2,-1,-3). Finally, 6
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then get (1,2,3)H(-1,-2,-3) , and then composing with another one

above gets us to (1,3,2). So we can achieve any rotation or transposition or change of sign,

hence our norm will have the corresponding symmetries.
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Now x(Li+L2)=2; this is similar to the calculation we gave before. It cant be zero

since then symmetry implies 2x(L1)<x(L1+lt)+x(L1-L2)=0. Also, it can't be 1; since a

X_-minimzing surface S has at least two ,9-components (and an even number of components

altogether on aN(L 1 )naN(L2 )), and an odd number of 9-components (since X(S) is odd),



there must be a meridian on L3; by capping off with a disk, we get a surface bounded by

L1 UL2 intersecting L3 exactly once, again contradicting linking number 0.

Finally, using this and symmetry, we can conclude that x(L)=x(L1+L 2 +L3 ) =3, for

otherwise convexity (and the fact that, as before, a representative has to have an odd num-

ber of essential boundary components (an odd number around each component) x(L)=1;

but then using symmetry, 4=x(2(Li+L2))<x(L,+L2+L3)+x(L,+L2-L3)=1+1=2, a con-

tradiction.

From this we can deduce the shape of B.; each of the +Li lie on OB., and their

convex hull is the octahedron. Burt the points (1/3)(+L1+L2+L3) (signs are independent)

each lie in the interior of a different face of the octahedron, and all lie in BB.; so our

argument before tells us that the octahedron=B,,. From this we can quickly determine x

itself; x(aL,+bL2+cL3)=Ial+lbl+lcl. Also, since the faces of the octahedron correspond

to the vertices of B.- (the vertex isd the linear map equal to one on the face), we can

determine the unit ball BX. as well. The linear map is the inner product with the normal

to the plane containing the face (suitably scaled); but these normals are easily seen to

be (1/3)(+1,±1,±1,) (signs independent), and the scaling factor (since the norm of this

vector is 1/vI3_) is v~35, so it easily follows that B,,. =[-V3-,
V3-] 3 .

Next time we will do a somewhat more complicated example (another 3-component

link), and then start looking at the mechanics behind Gabai's construction of foliations

using the Thurston norm.
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We'll do one more example of computing the Thurston norm, before moving on to

more theoretical business.

Let L be the three-link chain pictured below. As with our previous examples, we

will exploit some symmetries of this link to help us compute the norm: with the orienta-

tions we have given it, rotating about the center of the picture affects the permutations

(1,2,3)x--*(2,3,1) and (3,1,2). Reflecting it in the lines in the plane and through the center

give the permutations (1,2,3)H(-1,-3,-2), (-3,-2,-1), and (-2,-1,-3). By drawing the link

slightly differently (see below) and rotating around the center, we get the permutation

(1,2,3)H(1,3,2). Finally, composing this with on of the transpositions above, we get (-1,-

2,-3). From these it is easy to see that any permutation that changes no sign or changes all

of the signs can be achieved as a symmetry of the link, and therefore reflects a symmetry

of the Thurston norm x.
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Now let's calculate. As before, x(L,)=1; a surface with this X_ is given below, so if

x(L 1 )541, then x(L 1 )=0, so L1 could be represented by a disk or annulus. But, as before,

a disk contradicts the non-triviality of the link (or, if you prefer, the fact that the linking

number of pairs of components are all 1, in this case), while an annulus would give a disk

spanning L 1 and hitting only one of the other components, contradicting linking number

1 with the other component.

In this case, however, we now jump out of order and calculate x(L1+L2+L3) next.

A surface with X_=1 is given below, and since the Euler characteristic of a spanning

surface for L must be odd (there are an odd number of boundary components around

each component) and negative (if =1, some component would be a disk, contradicting

non-triviality again), x(L) must be at least 1, so x(L)=1.



Now we can show x(Li+L2)=2; if not, it is 1 or 0. If 1, then the X_-minimizing surface
would have to be a twice-punctured disk (since it has to have at least 2 components); but
then one component (around L3) is a meridian, so the surface gives an annulus hitting
L3 once, contradicting that LIUL2 has linking number 2 with L3. On the other hand, if
x(Li+L2)=0, then exploiting the symmetries we have of the link, we would have
2=2x(L 1 +L2 +L3 )=x((Ll +L2)+(L2+L3)+(L3+L1))<x(L1 +L2)+x(L2+L3)+x(L3+Li)=0,
a contradiction.

	

So x(L, +L2)=2.

	

But from this it then follows that x(L1 +L2-L3)=3;
for otherwise (since a representing surface must again have an odd number of boundary
components) it equals 1, and then

4=2x(Ll+L2)=x((Ll+L2)+(Li+L2))<x(L1+L2+L3)+x(L1+L2-L3)=1+1=2,
a contradiction. Therefore x(L1+1-L3)=3, allowing us to finally prove that x(L 1 -L2)=2,
because (using the symmetries)

3=x(L 1 -L2+L3 )<x(Li -L2)+x(L3)=x(L1-L2)+l,
so x(L1-L2)>2, while convexity says it is <2.

LI

Therefore x(±LlfL2 :LL 3 ) =1 if all of the signs are the same, otherwise it is =3; and
x(LIfLj ) =2 for all i:~j. If we plot all of the points this then guarantees have norm 1 (see
below), we find that their convex hull is basically the octagon that formed the unit ball
for the Borromean rings (which is what we would have gotten here if x(L1+L2+L3)=3)
together with two tetrahedra stuck onto it in the all-positive and all-negative octants. The
amazing thing, however, is that is gives us a convex polyhedron in which we have already
found points of norm 1 in the interior of each face! The point is that, for example, the
triangle with vertices (0,-1,0), (1,0,0), and (0,0,1) and the triangle with vertices (1,0,0),
(0,0,1), and (1,1,1) together form a planar rhombus (by checking that the lines between
the pairs ((1,0,0), (0,0,1)) and ((0,-1,0), (1,1,1)) intersect (at (1/2,0,1/2)). The resulting
polyhedron has six faces (six faces of the octahedron pair off with the faces of the tetra-
hedra, and two faces were lost when the tetrahedra were glued on). We have also found
points of norm 1 (the intersection of the two diagonals are of the form (1/2)(L;±Lj)) in the
interior of each face! So this polyhedron is the unit ball! It's basically a `rhombic cube' -
it's what you would get if you took two opposite corners of a cube and pulled them until
the short diagonal of a face equalled the side length.



So that's one final, somewhat more interesting example.

K,0,0)

What we will start to do now is to begin an attack on Gabai's converse to Thurston's

theorem:

Theorem (Gabai): If M is a compact, orientable 3-manifold, with ,9M = tori, and if

(S,aS)C(M,aM) is a surface which is norm minimizing in its homology class, then there

exists a taut foliation F of M, transverse to aM, such that S is a leaf of F.

One very important application of this theorem is to computing the genera of knots and

links in S3 . If L is a link in S 3 , and M = S3 \int N(L), then there is a surface (representing

L under Alexander duality) S with aS = a loop in each a-component of M (we often

think of it as a surface in S 3 with boundary equal to L), known as a spanning surface for

L. One interesting problem is to compute, for a given link L, the least possible genus of

such a surface for L, and construct a representative. In the language of Thurston norms,

we wish to calculate x(L), and find a norm-minimizing representative. Gabai's theorem

gives an often effective way to do this; if you have a likely candidate, then by foliating

the complement we can invoke Thurston's theorem to prove it is norm-minimizing; Gabai's

theorem says that if we are right, then we can (in principle, and often in practice) construct

such a foliation.

To understand Gabai's proof (we will not go through it in all of its generality, but will

do so in a special, but very useful, case), we need to introduce some new concepts.

Definition: A sutured manifold is a pair (M,y), where M is a compact orientable

3-manifold, and -yCOM is a collection of disjoint annuli and tori, denoted A(y) and T(-y).

Each annulus A comes with an orientation, in the form of an orientation to its core circle,

called the suture, and denoted s(A); the collection of sutures is denoted s(-y). Each com-

ponent of the rest of the boundary, R(y)=aM\int(y), can be given a (normal) orientation,

allowing us to split R(y) into two pieces; R+(y) consist of those pieces for which the nor-

mal points out of M, and R_(y) consists of the pieces with inward-pointing normal. These



normals, however, must be chosen in a way consistent with the orientations of the sutures

- if we orient a component of R±(y) (using the normal orientation as third vector of an

orientation for M), this induces an orientation on its boundary components; these must

agree with the orientations on the suture in the bordering annulus. See the figure below.

This rather long-winded definition is obscuring what is really a rather simple idea; the

motivating picture is what you get when you split a link exterior open along an orientable

spanning surface S (shown below). The surface S becomes two surfaces in the boundary of

the resulting 3-manifold M=S 3\int N(L) split open along S, with annuli running between

the pairs of boundary components (coming from 9N(L); this is y). The orientation on

S induces a normal orientation, which gives normal orientations for the two copies of S

in 8M. Finally, if S homolo ically represents the link L, then the orientation it induces

on it's boundary is the same as the orientation on the link; this orientation on the link

gives the orientations of the sutures which are compatible with the normal orientations on

Sf=R±(y).

One thing to notice: the orientation conventions of a sutured manifold require that as

you cross a suture you must pass from R+ to R_ (or vice-versa) - the orientation on the

boundary reverses itself as you cross a suture (from the point of view of 9M).

Now it is a fact that, for any compact, orientable 3-manifold M and any codimension-

0 submanifold N of OM, we can define a Thurston norm on H2 (M,N), just as we did for

H2(M,BM). One just needs to know that any homology class in this relative group can , like

before, be represented as a compact, embedded surface S with 9SCN. I've never actually

seen a proof of this, but since I'm only mentioning it mostly for motivational purposes

anyway, this small lack will not bother us much. Then we came make the definition:

Definition: A sutured manifold (M,y) is called taut if R+(y) and R_(y) are both

norm-minimizing in their homology classes.



Here the motivating example is that the sutured manifold described above is taut, if

S is norm minimizing in its homology class in H2(S 3 \int N(L),cM(L)) (proof next time).

Then the theorem Gabai actually proves is:

Theorem (Gabai): A sutured manifold (M,-y) is taut iff there exists a taut foliation

.F of M, transverse to y, with R(-y) = union of leaves of F.

Next time we will discuss some more of the basic ideas that go into the proof; it is

basically an induction, using the notions of a decomposing surface and a sutured manifold

hierarchy.
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Last time we talked about sutured manifolds and taut sutured manifolds. Today we

will describe what they are good for (and how one might find one!). Since from this point

forward much of what we do will rely heavily on pictures, I'm going to start sticking them

at the end.

Gabai's construction employs induction, using the notion of a decomposing surface:

Definition: A decomposing surface S for a sutured manifold (M,^t) is a ((normally)

oriented, properly embedded) surface in M such that

(1) For every component T of T(-t), Sf1T consists of parallel, coherently-oriented

circles;

(2) For every component A of A(-t), Sf1A consists either of parallel circles coherently-

oriented with one another and the suture in A, or arcs running straight across the annulus

A; see Figure 1.

Figure 1

The main thing one does with a decomposing surface is to decompose along it; we can

create a new manifold M' by splitting M open along S. The point, though, is that because

of the conventions on how the boundary of S meets the sutures, we can in fact get a new

sutured manifold, as follows:

In case (1) and the first half of case (2) above, S splits T and A into annuli (see Figure

2). Using the orientations on the boundary of S, we can assign an orientation to the cores

of these annuli (in case (2), this orientation agrees with the one already present). Also

(locally, at least) we can use the normal orientation to assign a normal orientation to all

of the new boundary components, so that the new annuli are in fact sutures for M'. In the

second half of case (2) we can do something similar, it is just a little bit more subtle. The

picture before and after splitting is as in Figure 3; what we do is use the normal orientations

on each of the pieces to decide where the sutures should be. The sutures are supposed to

separate the parts of the boundary where the normal orientations are reversed, and where

we look at the picture, we see that this should include the two pieces we originally started

with, as well as two pieces (one top, one bottom) where s met R+ and R_. Notice that

if we had given S the opposite orientation (assuming we could, i.e., S didn't also meet an

annular suture in parallel circles (which forces an orientation upon us, to get coherency)

our choices here would be the other two arcs, instead. These four pieces fit together to

give us two pieces of our new sutures 7'. We write (M,7) D+(M',y').

Figure 2

	

Figure 3



Gabai's proof that taut sutured manifolds admit taut foliations then breaks into two

main pieces. First he shows that a taut sutured manifold has a (taut) sutured manifold

decomposition:

Definition: A (taut) sutured manifold decomposition of a sutured manifold (M,^Y) is

a sequence of decomposing surfaces

(WY) -'(M1 ~

	

-4 ...

	

. . . S.(Mn,^tn)

where each sutured manifold is taut, and ( Mn,Tn)=(jj D 2 x I, 11 OD2 x I). The sequence

of sutured manifolds is called a sutured manifold hierarchy for M.

Then Gabai shows that one can use the sutured manifold hierarchy to tautly foliate

M. One works back up the hierarchy from the bottom; it is easy to see how to tautly

foliate (M.,yn) - foliate each 3-ball by parallel disks. This is transverse to the sutures,

and contains the surfaces R+ , R_ as leaves. Then by using the picture of how (Mk,-Yk)

is obtained from (Mk+l, yk+l) (by gluing back together), one can extend the foliation on

(Mk+l,-Yk+l) to one on (Mk,-yk) (with the same properties) by a process of sspinnin , shown

diagrammatically in Figure 4. One basically take s an infinite number of parallel copies

of the R+ ,R_ in Mk+l , limiting on the real ones; then by cutting them open along Sk+1
and shifting by one, we can basically turm Mk into Mk+1 with an infinite product glued

on. Gabai shows that by making careful choices, one can extend the foliation on Mk+1

to one on Mk, by gluing on a foliation of this infinite product. This is a very delicate

process, which we will only prove in a special (although highly useful) case, that of a disk

decomposition.

Figure 4

Definition: A disk decomposition for a sutured manifold is a sutured manifold in

which all of the decomposing surfaces are disks. (We do not require that all of the sutured

manifolds in the resulting hierarchy be taut; this is actually implied by the existence of the

decomposition.) A sutured manifold which has a disk decomposition is called completely

disk decomposeable.

As an example, take the (Hopf) link L pictured in Figure 5 (which we think of as

sitting in S3 ). We can easily find a spanning surface for L, and if we imagine thickening

up this (annular) surface, we get a solid torus (whose complement, which is actually our

sutured manifold, is also a solid torus). We can then draw the (cores of the) resulting

annular sutures on this solid torus, to gives us an inside-out view of our sutured manifold.

Remembering that the disks we want to find should lie outside of the solid torus we see

in from of us, it's not hard to find a candidate for a decomposing disk. All that remains

is to figure out what it looks like when we decompose along this disk. It's clear that the

boundary of our new sutured manifold will be a sphere (and our sutured manifold will be

a solid torus cut open along a meridian disk, i.e., a ball) - we must then figure out what



the new sutures look like. But this is actually not to hard to figure out. The boundary

of the (oriented) disk comes with its own orientation, as do the two original sutures, and

the new sutures inherit these same orientations, so there is really only one way to glue

the pieces together in a way that respects orientations - see the figure. Inspection shows

that the resulting suture is connected, so the sutured manifold we get is actually D 2 x I.

Therefore the sutured manifold we started with is disk decomposable.

Figure 5

The general picture we get when decomposing along a disk is not much worse than

what we drew above - see Figure 6. The picture is entirely local; basically the old sutures

get surgered along the disk D, according to the orientation of the disk. By choosing

the opposite orientation, we get what is in essence a dual picture. These two different

decompositions can create drastic differences in the global behavior of the sutures. In our

constructions it will often be the case that one choice gives us a much more well-behaved

collection of sutures.

Figure 6

What we will show is that if we have a disk decomposition for a sutured manifold

(M,-y), then we can inductively build up a taut foliation (as in Gabai's general argument) .

Therefore, if we started by splitting the exterior of a knot or link along a spanning surface,

we will have shown that the spanning surface is norm minimizing in its homology class

(which is almost - but not quite - the same as saying it is a least-genus spanning surface

for the link). But just as important, we will also produce a family of examples of spanning

surfaces for several classes of knots and links which we can (relatively) easily show are

disk decomposable, thereby allowing us, for example, to compute the genera of these knots

and links. We will in fact do this first (in order to give us some reason for actually going

through with the construction of the foliations!); the construction of the spanning surfaces

themselves will be by Seifert's algorithm.

Given an (oriented) diagram for a knot or link L , Seifert described a process for

building an embedded surface in S 3 whose boundary is L. We start by projecting L onto

the plane, creating an (oriented) 4-valent graph, like in Figure 7. Using the orientations on

the edges, we break the graph at the vertices (by matching them in adjacent pairs head-

to-tail) to create a collection of disjoint oriented loops. We imagine bounding each loop

by an embedded (oriented) disk, by pushing the loops into different levels, as necessary.

Then we glue rectangles to these disks, in the form of half-twisted bands (which is our way

of re-introducing the vertices of the link projection) to recover a surface whose boundary

is L.

Figure 7



There are two things that we can notice about this construction. The first is that

the surface that we build this way is always orientable. (N ormal) orientations on each of

the disks can be induced from the orientations of their boundaries, as can the half-twisted

bands (two opposite edges of the rectangle are coherently oriented (the ones glued to the

disks), which determine the orientation). These normal orientations agree at the point

where any one is glued to another (more or less by definition!), and hence determine a

global (normal) orientation.

The other is that the genus of the resulting surface really doesn't matter so much

on the link we started with, as it does the oriented graph that it creates. For if we were

to change a crossing in our link projection, the oriented graph remains the same, and so

the disjoints loop (and the disks they bound) do, too. The only thing that changes is the

direction of twisting given to the rectangle that we glue on a give the spanning surface.

But the direction of twisting can be changed by cutting along the middle of the rectangle

and giving a full twist; consequently, theF resulting surfaces are homeomorphic , and hence

have the same genus.

This last fact allows us to easily see that Seifert's algorithm will not always build a

minimal genus spanning surface for the link (or, more precisely, a norm-minimizing surface

for the homology class it represents). For example, if we take our picture of the figure-8

knot above in Figure 7, and change one crossing, we get a projection of the unknot. But

it is easy to see that the algorithm run on the figure-8 knot produces a surface (of Euler

characteristic -1, hence) of genus 1, is it also does for the unknot. But the genus of the

unknot is 0 - it can be spanned by a disk.

Figure 8 (no joke intended)

However, we shall see next time that, in many cases, for the right projection of the

link Seifert's algorithm does build a norm-minimizing surface spanning the link. Such

projections include all alternating projections, as well as the standard pictures of pretzel

knots (with a few exceptions). We will show this by showing that the resulting surface is

disk decomposable.
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Well, today's proofs will consist almost entirely of pictures.

Our goal is to prove:

Theorrem: If L is a (non-split) alternating link projection, then the surface we get

by running Seifert's algorithm on L is disk decomposable.

The proof naturally breaks down into two cases. The first will be dealt with today -

we'll do the other case next time. In each case the idea of the proof is to argue by induction

on the Euler characteristic of the surface created - if X(F)=1, then F is a disk, and S 3 \int

N(F)=D2 x I, which is clearly disk decomposable (the non-splitness assumption is just to

insure that the surface we build using the algorithm is connected).

Basically, if we run Seifert's algorithm and look at the disjoint circles that are created

halfway through (see Figure 1), one of two things happens. Either the circles can be filled

in with disks in the plane (well, actually, 2-sphere) of the projection, which do not intersect

one another (the 'Seifert circles' are not nested), or they cannot be (the Seifert circles are

nested). We will deal with the first case first.

Figure 1

Now, whether or not the Seifert circles are nested really doesn't depend on the link,

but just the projection of it onto the plane (i.e., on the underlying oriented graph in the

plane). We use the alternating hypothesis, however, to tell us that the half-twisted bands

that are attached to the Seifert disks all twist in the same direction - they either all have

a right-handed twist or all have a left-handed twist (Figure 2). This is because as we

travel around the boundary of a Seifert disk, we always find bands with the same twist

(otherwise, consecutive bands of opposite twist would give consecutive overcrossings, say).

Now associated to our Seifert surface there is (in this case) a graph I' (which we can

think of as being both in the surface F and in the projection plane) - we put a vertex in

the center of each Seifert disk, and an edge across each half-twisted band (see Figure 3).

By altering our link projection if necessary, we can also arrange that

(1) The graph I' has no hanging edges (Figure 4), and more generally

(2) No edge of I' separates I' (Figure 5).

In the first case, a hanging edge means a Seifert disk with only on band attached

to it; by flipping the disk over, we can amalgamate two disks and a band into a single

disk. Clearly, the projection remains alternating. In the second case, there is a loop in

the plane which hits P once in that edge. this loop separates the plane into two disks, and

by flipping the entire link projection in one of them over, we again amalgamate two disks



and an edge (the offending one) into a single disk. Again it is not hard to see the resulting

projection of our link is still alternating, and further that the resulting surface is the same

as we would get by running Seifert's algorithm again on the new projection (Figure 6).

Since these actions in both cases reduce the number of crossings in our projections, we

eventually can't do either. (Those of you attending Cameron's class no doubt recognize

this as the process of getting a reduced diagram for an alternating link.)

Figures 3 through 6

But now if we look at our graph I', it turns out that ~ny of the disks that it cuts the

sphere into will serve as an appropriate disk to start our disk decomposition on. (We went

through the trouble of reducing the diagram first just so that the boundary of each of these

disks do not cross the same edge of the graph twice - otherwise an arc joining those two

` faces' of the disk gives a loop appropriate for (2)).

In terms of our Seifert surface, this disk looks like Figure 7. Remember that alternating

implies that the bands all twist in the same direction - our disk looks like a 2n-gon (since

F is oriented - the orientation reverses as you cross each band, so must change an even

number of times). Thickening up the picture, we get Figure 8. Now if we choose our

favorite orientation (either one will do), and perform the decomposition, locally we get a

picture like Figure 9. It's just a matter of breaking our old sutures where they hit the disk,

and then following in the direction of the boundary of the disk to reglue them. But if we

pull things a little tight, we then get a picture like Figure 10, and it is easy to see that this

picture comes from a thickened-up surface (locally) - see Figure 11. The point is that this

decomposition really amounts to removing the piece of the surface F the we started with

(in Figure 7) and replacing it with this one.

Figures 7 through 11

The resulting surface has higher (i.e., closer to 1) Euler characteristic ( Ex: how do

you see that?); but, just as important, it too is a surface obtained by running Seifert's

algorithm on an alternating link projection! This can be see by seeing that the half-twists

that we see in every other `end' of the new piece have the same sense as the ones in our

original surface, so its boundary is still alternating. Also, this piece itself has actually

become a Seifert disk for the new link - this can be seen since the orientations along its

boundary are all consistent with one another. Basically, what has happened is that every

other Seifert disk around the boundary has been amalgamated into one (pushing off new

small disks along the other edges) - see Figure 12.

Figure 12

That completes the proof in the first case (actually, it really does! The resulting link

also has non-nested Seifert circles - they're basically the same ones we started with (modulo



the amalgamation).). To deal with the second case (the circles are nested), we need to

introduce a new concept.

Definition: Suppose Fl , F2 are orientable surfaces in S 3 =B3 UB3 , FiEB3 , F2EB3 ,
with F 1 f1F2 = a 2n-gon D in the equatorial S 2 , as depicted in Figure 13. Then F=FiUF2

is a surface in S 3 , called the Murasugi sum (or generalized plumbing) of F1 and F2.

Figure 13

If we (normally) orient both Fl and F2 to point upwards on their common disk D,

then together they give a normal orientation for F. This in turn gives a sutured manifold

structure to M=S3\int N(F). We will prove our theorem in our second case by showing that

the Seifert surface is the Murasugi sum of two surfaces, each of which is disk decomposable.

Then the following result will finish our proof:

Proposition: If F 1 and F2 are both disk-decomposable, then so is F.

Proof: What we do is find a disk to decompose M along, giving a new sutured

manifold which in fact is (homeomorphic to) the disjoint union of S 3 \N(F1) and S 3 \N(F2 ).

Since by hypothesis each of these can be decomposed along disks to a union of D2 x i's, and

therefore M can be, too.

All we need is to find that one decomposing disk. But if we think of our picture of S 3

above as being S 2 xRUfoo, then there is an obvious disk to try - namely the complementary

disk D' to the disk D in the equatorial sphere (see Figure 13). All we have to do is see

that it works! But we have (by having an orientation on the two pieces F 1 and F2 ) already

given an orientation to the boundar of (D, hence) this disk D'. Even though we have the

option of choosing one of two orientations for this disk, we would be fools to simply i nore

the one that the setup hands us, so we might as well see what happens if we decompose

using that orientation. This is shown in Figure 14; basically, the two pieces lift off of one

another. It only remains to figure out which way the two pairs of vertical sutures are

joined together by the mew pieces of suture that come from D'; but it is easy to see that

they basically just give us our original 8F 1 and 9F2 back again. Finally, by isotoping D'

in each piece around (not at the same time! Pretend we have only one piece embedded in

S3 at a time) to lie parallel to D, we easily see that each piece is homeomorphic to S 3 \(the

appropriate thickened surface), as desired (Figure 15).

Figure 14

	

Figure 1~5

Next time we will show how this result allows us to finish our proof for the case of

alternating links. Then we will look at some more classes of knots and links for which we

can fairly easily find disk decomposable spanning surfaces.
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Today's lecture will be mostly by picture, too.

We've seen how to prove Gabai's theorem about alternating links in the case that the
Seifert circles are not nested. Today we finish the proof by considering the case of nested
circles.

If we (necessarily) have a collection of nested circles, then there is one circle -y which
separates the rest of the circles into two (non-empty) families, those inside of y and those
outside (Figure 1). Because our link L is alternating, it is easy to see that the half twisted
bands joining to y (well, to the Seifert disk D that it bounds) from the inside all twist in
the same direction (say, positive) as one another, and all the ones joining from the outside
also twist in the same direction from one another, but opposite to the ones on the inside.
For if two adjacent bands one inside and one outside, twisted the same way, our link would
not be alternating; the same is true if two adjacent bands on the same side had opposite
twisting (see Figure 2). Then by arguing inductively around y, starting with one twisted
band, it is easy to see that the bands behave as described.

Figure 1

	

Figure 2

Now if we imagine putting D in the plane of our projection, and lifting all of our
Seifert surface F inside of y up above the plane, while pushing all of F outside of F down
below the plane, then by looking at this new picture on the side (Figure 3) it is easy to see
that F is the Murasugi sum of two surfaces F1,F2 along (a disk very close to) D. By disk
decomposing F along the complementary disk to D, using as our boundary orientation the
natural one induced from 8F, we see that the resulting two surfaces (Figure 4) are the two
surfaces we would get by using the Seifert circles y and, alternatively, the circles inside
and outside of -t. In other words, they are each the result of running Seifert's algorithm on
some link. But these links, it is easy to see, are each alternating (and have fewer crossings
than our original link L) - this is immediate anywhere away from the loop y (because away
from y all of the crossings are the same as for L, hence alternate)while around y, since the
half-twisted bands around the inside (resp. outside) are all of the same sign, it is easy to
see that they also alternate (Figure 5). Therefore, by induction, we may assume that both
of the surfaces F1,F2 are disk decomposable, so by the result we proved at the end of last
time, F is also disk decomposable. This finishes our proof.

Figure 3 through Figure 5

This gives us a large class of knots and links for which we know how to build disk
decomposable (hence norm-minimizing) surfaces. Next we will explore another class of
links for which, in some cases, it is easy to identify a disk decomposable Seifert surface.

Definition: A pretzel link P=P(ni,.. .nk) is a link obtained by stringing k twisted
bands (each given ni half-twists) together as in Figure 6. If the integer n; is positive, we
give positive twists; if negative, we give negative twists (Figure 7). It is not hard to see that
P is not a knot if two or more of the ni are even; this is because how many components
the link has is determined not by the integers n; but by their parity (Figure 8), so we



could imagine using 0 or 1-twisted bands, to count components, which makes the assertion
obvious. If all ni are odd, then P is a knot if k is odd, otherwise it has 2 components.
Notice also that the ordering n l ,.. .,nk is in part illusory - it should actually be thought
of as a cyclic ordering, since we could instead draw our standard picture around a circle
(Figure 8).

Figure 6 through Figure 8

If all of the ni are odd, then there is an obvious spanning surface F(nl,.. .,nk) for this
1- or 2-component link, obtained by actually uttin in twisted bands with an odd number
of half-twists, together with the obvious disks at top and bottom (Figure 9). This surface
is orientable; this is the point to having all ni odd. By choosing a (normal) orientation on
the top disk and is opposite on the bottom, the odd number of half twists allow us to pass
these orientations up and down the bands in a consistent way (Figure 10). It is easy to
calculate the Euler characteristic of this surface: it basically consists of two vertices (the
disks at top and bottom) and k edges (the half-twisted bands), so its Euler X is 2-k. We
can use this surface to impose an orientation on P; if P has 2 components, this chooses one
of the two possible orientation pairs. Then it turns out that this surface is almost always
disk decomposable (hence norm-minimizing):

Figure 9

	

Figure 10
Theorem (Gabai): The surface F(nl,.. .,nk) is disk decomposable, unless

(1) {-1,1}C{nl,...,nk}, or
(2) (nl,.. .,nk)=(n,-n) for some integer n.

It is easy to see that in each of these cases the resulting surface is not disk decompos-
able; in the first case (Figure 11), we can see that P(nl,.. .,nk) =

P(nl,. . .,ni_1,1,ni+l,... ,nl_1,-1.ni+1,... ,nk)=P(nl,.. .,ni_l,ni+17... ,nj_l,ni+1,... Ink)
(Figure 12) which can be spanned by a surface with (2) higher Euler characteristic. In the
second case, P is the unlink (Figure 13), and the surface F is a flat annulus, which is not
disk decomposable (the resulting sutured manifold looks like Figure 14; this is an example
of a norm-minimizing surface which is not disk decomposable).

Figure 11 through Figure 14

The proof, as usual goes by induction. What we do is disk decompose along the
` obvious' disks - the ones in between pairs of adjacent half-twisted bands. All that we need
to do is be careful enough that in the process of the induction we never hit the two cases
that we know we can't handle. Since in the first one of the bad cases the possibility of
both 1 and -1 arise, our induction will be built around that.

Case 1: One of the ni=fl.

By cyclically permuting, we may assume that nl=fl, and WOLOG, we may assume
n1=1 (the proof for n l =-l is entirely similar). Then by assumption -1 does not appear
in the sequence of ni's, so in particular n2 :A -1. Then, depending on whether n2>0 or
<0, we do one of the two disk decompositions (on the `hole' between the first and second
bands) pictured in Figure 15. This gives us, starting with the sutured manifold from
F(1,n2 1 . . . Ink), a new sutured manifold, which, it is easy to see, comes from the surface
F(l,n3,...nk). Since this collection of integers also satisfies our hypotheses (no -1 in
n3,. . .,nk), this surface is disk decomposable, so we are done by induction.



Figure 15

Case 2: All of the IniI >3, and, for some i, ni-ni+1>0 (i.e., they both have the same
sign).

Here again, we mean this cyclically, so the possibility nk -n1>0 is included. We will do
the case that both are positive; the case both are negative is, again, similar. Here again we
do a disk decomposition along the `obvious' disk (Figure 16); using the right orientation,
doing the disk decomposition gives us a new sutured manifold, which comes from the
surface F(ni,...,ni_l,l,ni+2,...,nk). Then by Case 1, we are done; this new pretzel link
has a 1 and no -1!

Figure 16

Case 3: No ni is ±1, and they all alternate sign.

Then, since they in fact alternate sign cyclically , there are an even number of twisted
bands, which we can match up as positive-negative adjacent pairs (Figure 17). In this case
we argue more by brute force than by induction. By doing the obvious disk decomposition
between each element of a pair, depending on which orientation we use on the disk we get
one of two pictures (Figure 18). Notice how the orientation of the resulting core curve
differs in the two pictures. These decompositions result in sutured manifolds which do not
come from surfaces, which is why we must abandon our induction. But by doing these
disk decompositions for all of the pairs, using one of the orientations on one of the disks
and the other on all of the rest, we arrive at the sutured manifold in Figure 19, which
by pulling the two curves on top and bottom can be made to look like Figure 20. Now
by doing disk decompositions on the remaining `obvious' disks (from left to right, given
the choices we've made thus far), we can amalgamate the single belt curves, in all of the
left-hand tubes, to one (Figure 21), which swings around to give us the picture in Figure
22. Then a final disk decomposition (again, along the `obvious' disk) gives us a 3-ball with
one suture, which was our goal; we have built a disk decomposition. This completes our
proof.

Figure 17 through Figure 22

Next time we will do a few more examples of these constructions, and then start our
proof that disk decompositions allow us to build Reebless foliations around our Seifert
surfaces.
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We'll do one last example of a disk decomposable surface - this is the surface we get
by running Seifert's algorithm on the (-2,3,7) pretzel knot (Figure 1, 2,3). The associated
Seifert circles are nested, so the resulting surface is a Murasugi sum, suggesting that we
first try decomposing along the disk complementary to the summing disk (Figure 4). The
resulting two surfaces, it turns out, are both surfaces one would get by running Seifert's
algorithm on an alternating link (the (2,2) and (2,10) torus links, respectively - see Figure
5). Since by our previous result, these are both disk decomposable, we can conclude that
our Seifert surface for P(-2,3,7) is disk decomposable, hence of minimal genus. Notice that
the same construction will work for any pretzel knot of the form P(2k,p,q) where p and
q are both odd and have the same sign (where do things go wrong if they have opposite
sign?).

Now that we know that we can find disk decomposable surfaces for lots of knots
and links, it's time to convince ourselves that they really are worth having. This fact is
contained in the next two theorems.

Theorem (Gabai): If (M,y) is a disk decomposable sutured manifold, then M admits
a taut (transversely- orient able) foliation F which is transverse to y , and contains R+(y)
and R_(y) as leaves. In addition, for any component N of M with 7rl(N)541, ,P'=.SIN has
only RtnN as compact leaves, and the space of leaves of ,F'\(compact leaves) is S 1 .

Note that M, being disk decomposable, must be a handlebody; this is because by
cutting M open along a collection of disks we get a bunch of 3-balls. This means that we
can obtain M by starting with a bunch of 3-balls and glue disks in their boundaries together
in pairs. This amount to attaching 1-handles to the 3-balls, so M is a collection of 3-balls
with 1-handles attached, i.e., a handlebody. So the proviso that 7r, (N)01 is just ruling out
the possibility that N is a 3-ball (and therefore, as a sutured manifold, is (D 2 xI,8D2 XI)).
Therefore no can only be foliated (transverse to the sutures) by parallel disks - this is
basically Reeb stability. Note that the parenthetical comment above is actually not entirely
trivial; basically (employing induction) it says that if we disk decompose a 3-ball N and
get two product 3-balls (D2 x I,DD 2 x I), then the N itself is a product 3-ball. We leave this
as an exercise (draw a picture!). This extra condition, that after removing compact leaves
the leaf space of the resulting foliated (open) manifold is a bunch of S's, will turn out to
be the only relatively hard part of the proof. We do this extra work for a reason, however,
namely:

Theorem (Gabai): If (M,y) is a sutured manifold with y = a single annulus, and .F
is a foliation as described above, then.Fny = a collection of

	

ap rallel simple closed curves.

Corollary: If KC_S3 is a knot and FC_S 3 \int N(K) = M is a disk decomposable Seifert
surface for K, then there exists a taut foliation F of M with F as a leaf and.Fnam is a
collection of parallel longitudinal (also known as slope-0) circles.

The corollary follows immediately from the two theorems and the definition of a disk
decomposable surface. Now if we were to do slope 0 Dehn surgery (also known as 0-frame



surgery) on K, i.e., glue a solid torus to M so that the longitudinal circles bound meridional
disks in the solid torus, then we get a new manifold M+. By gluing meridional disks to
the leaves of F along,Fnam, it is easy to see that we can build a foliation F+ of M+, as
well. But it is easy to see that this new foliation is taut, because .F is: F+ has no new
leaves, so the transverse loops that proved that /cafsp was taut suffice for /cafpl, as well.
Notice that FUD 2 is a laef of F+.

But then the topological results that we proved before can come into play. In par-
ticular, Rosenberg's theorem tells us that either M+ is irreducible, or M+=S 2 xS1 , and
/cafplsp is the standard foliation by 2-spheres. But in the second case, this would imply
that FUD2 is a 2-sphere, implying that F is a disk, and therefore that the knot K is the
unknot. so we get:

Theorem (Gabai): If K54unknot has a disk decomposable spanning surface F, then
the manifold obtained by doing 0-frame surgery to S 3 along K is irreducible. In addition,
the surface F+ obtained by gluing a disk in M+ to F is (the leaf of a taut foliation, hence)
is incompressible in M+. In particular, M+54S 2 XS 1 .

A knot for which 0-frame surgery does not give S 2 x S 1 is said to satisfy Property
R (from a famous list of unsolved problems in knot theory compiled by Robion Kirby).
We therefore will have proved Property R for all alternating knots, for example. The
conjecture is (well, was) that only the unknot does not satisfy Property R. This conjecture
was proved by Gabai (around 1985), using exactly the techniques we have been describing.
In some sense, it's what sutured manifold theory was invented for!

Our next (and probably last) task is to prove these two theorems. We will start with
the first one. It is proved, naturally, by induction on the length of the disk decomposition.
If the length is zero, then M consists of a collection of product disks, which can be given the
product foliations, which clearly satisfy the theorem (the last condition is vacuous). This
leaves us with the induction step - we assume we have a decomposing disk D turning (M,y)
into the sutured manifold (M1, -yl), and we already have a foliation F1 on M1 satisfying
the conditions of the theorem. What we need to do is find out how to use this foliation to
find a foliation after we re lue the two copies of D in 0M l back together again (Figure 6).

We will start with a somewhat simpler case, namely the case that Dfls(-y) = 2 points
(Figure 7), which nonetheless contains most of the idea that we will need in the more
general case. This proof must necessarily break down into several cases (due in large part
to the fact that the foliation on simply-connected pieces looks qualitatively different):

(1) D does not separate M, and 7r1(M1) :A1
(2) D does not separate M, and 7r l ( M1)=1
(3) D does separate M, into components N 1 and N2, and ,7r1(Ni )541 for each i=1,2
(4) D does separate M, into components N1 and N 2 , and 7rl (N;)=1 for some i (say,

i=1)
We will do cases (2) and (4) first. In case (2), we have M 1 = a product 3-ball, so ,

since D intersects y in 2 points, M is a product solid torus (Figure 8), i.e., an annulus x I.
We can therefore foliate M by parallel annuli; but this would violate our extra assumption
- this would not have leaf space S 1 . But it is easy to see how to alter this product foliation
to make it have leaf space S 1 ; just cut along our disk D and reglue in a way that preserves

http://unknot.so
http://unknot.so


the foliation by parallel lines, but shifts all of them `up' (Figure 9). In case (4) we need not
be so careful; D looks like a rectangle (Figure 10), so gluing N 1 to N2 gives us something
homeomorphic to N2 (Figure 11); in fact (M,y) is really just (N2,y2), so we just use its
foliation as the foliation of M.

In the remaining cases, we do essentially the same thing, the two copies of D are
foliated (by F1) as rectangles (Figure 11), and we just glue them together in a way that
preserves the horizontal arcs of the foliation. This gives us alot of latitude in how this
gluing is done; the point is that by being slightly careful about how we glue, we can insure
that the space of leaves is as we describe in the theorem (provided it was before you glued).

The idea is that since the space of leaves is S 1 (when we remove the compact leaves
Rf), if we look at how the vertical arc in each copy of D intersects the leaves of F1, we see
that it does so in a special way. Basically, by mapping the interior of this arc down to the
space of leaves S 1 , it is a locally injective map (this is just saying that because the space
of leaves is S 1 , upstairs a short enough arc through a leaf L intersects L is only one point.
In the terminology we introduced at the beginning of the semester, all of the leaves are
proper), and therefore a covering map - it does not approach a limit as we approach the
ends of the arc, since if it did, then limiting point downstairs would correspond to the leaf
upstairs that the are is limiting on, i.e., Rf, a contradiction. So the transverse arc upstairs
keeps hitting the same leaves in a recurring pattern as we walk form one end of the arc
to the other; we can write the interior of the arc as a bi-infinite union of sub-arcs, whose
endpoints are the inverse image of a basepoint downstairs, and which each map down to
an are running around S 1 exactly once (Figure 12). If we glue the two copies of D together
so that they in some way respect this partitioning of the vertical arcs into subarcs, then
we will be able to conclude that the resulting foliation has space of leaves S 1 . To be more
precise, in case (1), the two vertical arcs are being mapped into the same space of leaves
S 1 , so use the same basepoint to create the partition of the vertical arcs. In case (3), the
two arcs map to different spaces of leaves S 1 ; choose any partition you like for each.

Then, in case (1), if we glue the two disks together so that the gluing respects the
partition, in the sense that each subarc is glued to itself in what essentially the identity,
then each leaf of Y"1 is glued only to itself , and therefore has no effect whatsoever on the
space of leaves (so it remains S 1 ). By `essentially the identity' we mean that each subarc
is identified in a natural way to the leaf space S 1 (where we imagine splitting along the
basepoint), and we do the gluing so that, on the level of this natural identification, it is
the identity - See Figure 13.

In case (2), we do essentially the same thing, but since the leaf spaces on each piece
are different S's, we merely require that the identifications are `essentially the same', i.e.,
they each correspond (instead of to the identity) to some fixed (though otherwise arbitrary)
orientation-preserving (so we get a transversely-orient able foliation - the S's are oriented
by the transverse orientation of F1) homeomorphism of the two S's, sending basepoint to
basepoint. Then since one leaf in N 1 is consistently glued to the same leaf in N 2 , it is easy
to see that the space of leave of the resulting foliation is obtained by identifying the two
S's together by our homeomorphism, i.e., is a circle.

Next time we will complete our proof, by showing how to carry out a similar construc-
tion in the case that D hits the sutures more than two times.
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Today we will finish our proof that disk decomposability implies the existence of a
taut foliation of the type described in the theorem. Our proof is by induction: we assume
that after disk decomposition (M,-I) 4 (M,,-yl) we have a foliation 171 on M1; our task is
to figure out how to build a foliation on M using this data. Last time we handled the case
when Dn-y consists of two points; today we handle the rest of the cases.

The proof naturally breaks down into several cases (although not naturally into the
order we are about to write them! - this is the order in which they are most naturally
prove ):

(1) D disconnects M and both pieces of NIUN2=Mi have 7r1(Ni)=1,

(2) D does not disconnect M, and Tri (Mi)=1,
(3) D does not disconnect M and 7r1(MI)y61,

(4) D disconnects M, and 7r 1 (Ni)01 for both i=1,2, and
(5) D disconnects M, and 7ri(eni)=1 for exactly one i (say i=1).

Case 1: Since 7ri (Ni) are both 1 and both handlebodies, each is a disk, and so M is a
disk. all that we need to verify in this case is that the set of sutures y for M is connected,
since then (M,y) will have the structure of a product 3-ball, which we can clearly foliate
as in the theorem. To prove this we just argue by induction, using as our inductive step
the claim that if we decompose a 3-ball sutured manifold and get two product balls, then
we started with a product ball. This is because if we have cut along a decomposing disk
and end up with connected sutures, then the arcs that the decomposing disk cut y up into
before decomposing must look like Figure 1. This is because after decomposing the set
of sutures in each piece is connected; but the arcs emanating from near the disk D must
be connected to one another head to toe (Figure 2), and if anyone is not connected to its
neighbor (Figure 3), each of the collections of arcs it separates (into two groups) have no
option but to connect to one another, implying that the sutures are not connected. But
then we clearly obtain a connected suture for M when we reglue.

Case 2: In this case, we have that M1 is a product disk (by Case 1, above); our
claim in this case is that the sutures of M must consist of parallel loops which axe each
non-trivial in 7r, (M). We prove this by (of course) induction on the number of points of
D(ls(y). s(y) comes from the suture of M 1 (Figure 4) by the usual gluing (Figure 1); if we
look at the arcs of yi running between the arcs parallel to the (two copies of) aD, each
either runs from one circle to the other (non-trivial arcs), or runs from one circle to itself
(trivial arcs). If it is trivial, it must go to an adjacent point (as in case 1); otherwise the
argument above again implies that yi is not connected. If all of the arcs are non-trivial,
then it is easy to see that the resulting sutures -t of M each intersect aD in the same sense
(i.e., always running in the same direction - see Figure 5), since otherwise it would have to
turn around (creating a trivial arc). So each has non-zero intersection number with aD,
hence are non-trivial (and hence all parallel) in Sr i (M).



If some arc is trivial, then it is easy to see (Figure 6) that the resulting sutures s(,y) are
the same as what we would obtain by using a collection of (isotopic) sutures in Mi which
give sutures in M meeting 8D in fewer points. By induction (the base case is Mn-f=2
points, which we handled last time), the resulting sutures (isotopic to our original ones!)
are parallel and essential.

Using this, we can now build a foliation on M satisfying the theorem. We start with
the standard foliation of the solid torus M by meridian disks. But we have a collection of
loops (well, annuli, really (their neighborhoods)) running transverse to the meridian loops
in the boundary, and cutting aM into two collections of annuli R+, R_ (Figure 7). If
we imagine the meridian disks as oriented upwards, then as we approach R + , we imagine
ourselves starting to pull the disks down, and as we approach R_ we pull them MR (Figure
8). This gives us a (transversely-oriented, taut) foliation of M which points outward along
R+, inward along R_, and is transverse to y (Figure 9). Since it came from the standard
foliation, it is easy to see that when we remove the compact leaves Rf, we have space of
leaves S'.

Case 3: This case is the heart of the proof; the remaining cases will amount to slight
modifications in the construction we give here. We start with our disk decomposition (our
pictures will illustrate the case of 4 points, for the most part), and we know that after
cutting open and altering the sutures (Figure 10), we have a foliation Fi on Mi, with
space of leaves S i . Our task is to figure out how to use this to build our foliation F on M.

The basic construction is contained in Figure 11. What we do is, at the two copies of
D that get glued together, we cut out what amounts to a disk x I, running `halfway' down
the sutures on either side (here the disk looks like a rectangle - if we were dealing with
Dn-y=2n points, this would be a 2n-gon whose sides are alternately in the boundary of
the annulus neighborhoods of the sutures (Figure 12)). We assume that the leaf lying at
the `bottom' of the cut is the same leaf L on both sides (by cutting down that far - the
leaves on the left are the same as the leaves on the right (since after throwing away the
compact leaves we have space of leaves S i , so the picture along transverse arcs are the
same on both sides, cycling through the same set of leaves infinitely often). Did that last
sentence make any sense? What we will do is glue these two disks at the bottom of the
cuts together. Because the normal vector to the foliation Fi is pointing outward at the
bottom of one cut and inward on the other, we will get a transversely-oriented foliation
after gluing. Now in the sutures, beyond the point where we cut down to, there is another
rectangle in the suture, with one end on Rt (basically, the `other half' of the suture). We
will also glue the walls of the cuts we have made to the corresponding rectangles given
in these other halves; see Figure 13. Provided we glue these pairs of rectangles together
by homeomorphisms that preserve their foliations (from Fl) by horizontal arcs, it is fairly
easy to see that we will succeed in building a foliation of M which has R±(y) as leaves and
be transverse to the sutures (Figure 13). We have a very wide latitude in how these gluing
take place; as we did last time, we will see that by choosing these gluing carefully, we can
also insure that the space of leaves remains S1 .

If we take the arc transverse to each of the rectangles that we are gluing in pairs, it
easy to see that each starts at L and then runs transverse to .''1 tending to R±(71). This
path runs either with or against the normal orientation of Fi, depending upon which side



of the picture the rectangle originates (i.e., lies in the cut) from. Because the space of
leaves (when we throw away the Rf) is S 1 , if we use (the point corresponding to) L as
basepoint, we can partition the intervals, as before, into an infinite number of subintervals
all wrapping around S 1 once as we march out to Rf (Figure 14). If we do our gluings, as
before, to respect this partitioning (i.e., after the identification with S 1 , are gluings over
each subaxc is actually the identity), then we will always be gluing a leaf of .F'1 to itself
(again, as in the corresponding case from last time). Therefore, F will have the same space
of leaves as F1 (essentially, it has the same leaves , after throwing away Rf (there could
by components being glued to one another in R±)). This proves the inductive step in this
case.

In Case 4, things are essentially the same as before; the leaves on one side are all
different those on the other, so we just choose any two leaves L, L' to cut down to (Figure
15). Then the same structure occurs on the transverse arcs on either side (but mea
sured against different spaces of leaves S1

), and by choosing a single basepoint-preserving,
orientation-preserving homeomorphism of the spaces of leaves, and making our gluings to,
respect those identifications (as we did last time), we again can achieve space of leaves Si.

Finally, in Case 5, we can argue one of two ways. The foliation on the left-hand side
(say) is a product foliation by disks; and we are gluing this to one with the usual space
of leaves foliation. The transverse arcs on the left hand side intersect the same leaves (on
the inside of the cut; on the outside, they all intersect the same (complementary) set of
leaves). If we make one each of the two types of gluings we need, and use it to create
an (unnatural) partitioning of these disks into subarcs, and then make all of our gluings
respect that identification, we will again achieve space of leaves S 1 . Alternatively, one can
just notice that in fact (M,y) and (N2,N2ny1) are homeomorphic as pairs, so we could just
use the old foliation; we leave this as an exercise.

This completes our construction of taut foliations from disk decompositions. We leave
it as an exercise to show that these foliations are (inductively) taut (imagine starting with
a solid torus). This leaves us with one last task - to show that if we build such a foliation
around a Seifert surface for a knot , the foliation intersects ON(K) in paxallel circles. This
will be our task for next time; in the proof we will need to know the following fact (which
we could have prove long ago, but who knew we'd need it?!).

Proposition: If M is a compact manifold with a (transversely-oriented) codimension-
1 foliation.', then the set C of all compact leaves of F is a closed subset of M.

This is actually true in all dimensions - we will give the general proof. The hypothesis
of codimension-1 is essential, as is the compactness of M (try, for example, to build a
counterexample using a foliation of R 2 \{pt.}by circles and lines). To prove it we will first
need the following fact:

Lemma: If M, F are as above, and U1,
...U.

are distinguished coordinate chaxts for
.F, then there is a number N such that for any compact leaf L of F, L meets each Ui in at
most N plaques.

Proof: Suppose not; suppose that for any n there is a compact leaf L n of F and an
i such that L,, meets Ui in more than n plaques. Using the principle that if you throw an



infinite number of things into a finite number of holes, you must have thrown an infinite
number of things into one of the holes, we can assume that i=1 for all n. Now take a
transverse axe a to the distinguished chart Lfl (see Figure 16), and look at the L nna. This
consists, for each n, of more than n points. However, since each Ln is compact, this also
consists of a finite number of points for 'each n - otherwise, these points of intersection
would give an infinite discrete set in a compact leaf, which is impossible. But now we
will inductively choose a sequence of compact leaves (which we will still call L n ) with the
following property:

For each Ln , there is a loop 7n transverse to r such that Ln n•yn = 1 point, and Lkn'yn=O1
for all k<n.

If we have found Li,.. . , L n _1, then together these leaves intersect a in some finite
number K of points. By our hypothesis, we can find a leaf Ln of F which meets a in
more than K-!-2 points; by the pigeonhole principle (the K points of the previous leaves
cut a into K+1 subarcs) there axe two of these points x,y which have none of the points of
intersection of Li,.. . , Ln_i between them along a. But then by using one of our standard
tricks from long ago, we take an arc in Ln between these two points, and by pushing it off
of itself using the transverse orientation to give us the loop -yn that we desire; it only hits
the leaves that pass between x and y, none of which axe our previous compact leaves.

This construction allows us to find a contradiction to our hypothesis. Since Lnn'yn= 1
point, on the level of homology, their intersection number I([Ln],[•yn])=f1, and, in partic-
ular, [Lm]540 in Hm _i(M) (where m=the dimension of M)for every n. Also, the facts that
I([Lk],[-yn])=0 for every k<n and intersection number is linear implies that the homology
classes [Li],. . .,[Ln] axe linearly independent in H m_ i (M) for every n (this is some fairly
easy linear algebra). This in turn implies that the dimension of Hm_i(M) is at least n, for
every n! so H m _i(M) is infinite-dimensional, contradicting the fact that M is compact.

So we have obtained a contradiction, proving the existence of our universal bound
N. Next time we will show how to use this to prove the closed-ness of the set of compact
leaves, and then prove our last remaining theorem about foliations of knot complements.
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Last time we showed that for any compact M and (transversely-oriented) foliation
.F of M, and for any finite collection of distinguished coordinate charts for M, there is a
number N such that any compact leaf of F intersects each of our charts in at most N
plaques. Today we will use this to prove:

Proposition: for M and F as above, the set C of compact leaves of F form a closed
subset of M.

and then we will use this fact to prove our remaining theorem related to disk decomposable
surfaces.

Proof: Suppose C is not closed; then there exists a sequence of points x n in C (i.e.,
x, EL„ for some com,pact leaf L,, of F) limiting on a point x~C (i.e., xEL, where L is a non-
compact leaf of T). But since M is compact, we can cover it by finitely-many distinguished
coordinate charts for T . Since L is non-compact, for one of these charts Lt, L(1U consists
of an infinite number of plaques (otherwise L can be written as a union of a finite number
of plaques; by assuming we chose our charts so that their closures are `closed' charts inside
some larger chart, we can conclude that L is the union of finitely-many compact disks,
hence is compact).

The point x is in some chart; call it U'. If we take transverse arcs a, a'through the
middle of U and through x, then Lnaconsists of an infinite number of points. Also, since
the xn limit on x and are not contained in L (since L is not compact), there must be plaques
in U' of the leaves L,l li miting transversely down on the plaque containing x (Figure 1).
But we can quickly use these two facts against one another; we have a bound N on the
number of times the leaves L n hit U. But if we pick N+1 distinct points in Lnaand join
them by arcs in L to the point x (Figure 2), then by looking in the normal fence over each
arc (i.e., imagine lifting each arc in the normal direction) we get arcs in the L n joining the
xn to points lying over our N+1 points, for large enough n. But this implies (since our
N-}-1 points are separated from one another by some definite distance, and we wait until
our points are less than half that distance from their corresponding points of L) that there
are at least N-}-1 distinct plaques of L„ in Lf, for large enough n, a contradiction.

We can actually get more from this same line of argument, namely:

Proposition: The set of compact leaves of )~' fall into finitely-many homeomorphism
classes, and if a sequence of compact leaves L,1 limit on the (compact) leaf L, then for
sufficiently large n L_L,,, and bound a product between them.

Proof: The second part implies the first: if T7 has compact leaves L n which are
pairwise non-homeomorphic, then by choosing a point x n of each, we get a sequence in the



compact M, so has a convergent subsequence (call it x n ) converging to some x (which by
the above is contained in a compact leaf L). But the second part says that then for large
n, L^--'L n , so in particular are homeomorphic to one another, a contradiction.

For the second part, we simply use the fact that any compact surface, such as our leaf
L, can be thought of as a 2-disk with arcs in its boundary identified (a similar argument
works when the dimension of M is larger than 3 (provided you know that a compact n
manifold can be written as an n-ball with faces in its boundary identified)). This 2-disk can
be lifted along the normal fence to 2-disks in all sufficiently nearby leaves; in particular, to
any other compact leaf sufficiently close. But now if one of our disks lies in the compact
leaf Ln, then the claim is that Lnis obtained by exactly the same gluings on this disk as
give L (hence they are homeomorphic). This basically amounts to saying that if we draw
an arc a in the disk in L joining to faces that are identified (Figure 3), then the lift of this
arc to L n joins two faces of the disk which are identified in L n . But this follows because
Ln is compact (and F is transversely-oriented): If we take the normal fence over a with
its endpoints identified, we get an annulus, and the lift if the arc into Ln is, we claim, a
loop (giving what we want). But this is easy to see, because if it weren't, then (in one
direction) traversing the arc returns us to a point in the fence closer to the bottom from
where we started (Figure 4). But then continuing around again brings us still closer, and
continuing, will find an infinite number of points in Ln lying in the transverse arc over a
pont of L. But this gives an infinite discrete set in L n , a contradiction, since Ln is compact.

Since the gluings correspond, it is easy to see that the product structure between the
two disks (in L and L„) glues up to give an I-bundle between L an Lk, which, since F is
transversely oriented, must be a product.

With this in hand, we can now give a proof of our last theorem. We will actually
prove something slightly stronger:

Theorem: If K is a knot in S 3 , M=S3\int N(K), and.F is a taut, transversely-oriented
foliation of M such that:

(1) some leaf F of M is a Seifert surface for K,
(2) for every non-compact leaf L of F, L=LUcompact leaves of F, and
(3) Fnam is a foliation of OM with no Reeb annuli (Figure 5),

then.Fnam is a foliation of OM by parallel (longitudinal) circles.

Proof: Suppose not: then since,Fnam contains a compact loop (the boundary of
the Seifert surface), and since we know that the set of loops is closed, we must be able to
find a situation like Figure 5. We are assuming that the set of compact loops of 'PnOM
is not the entire boundary, so if we start walking transverse to the foliation (starting at a
compact loop) we will find a. last closed loop; beyond that we must have a non-compact leaf
A spiralling down on a. compact loop - y . Call the leaf of F containing A L, and the leaf of JF



containing y S. Notice that we immediately have ygXC~, so SnL54 (0, and consequently SCE
(Exercise: just take any point of S and join it to a point of y by an are in S). Consequently,
by (2), S is compact (or S=L; we will show why this is impossible after the rest of the
proof ).

Now we show that 0S=-y; this follows from our work on Thurston norms! This is
because the homology class [0S] goes to 0 under the homomorphism H l (aM)-+H1(M)
(since it is clearly a boundary in M!). It therefore is represented by n-f, where f is the
longitude of our knot (this is basically the definition of longitude). But by Alexander
duality, S then represents n in HZ(M); but since S is connected, and we showed that if a
surface represents a+0, it is the union of two disjoint surfaces each representing one of the
classes, it follows that n=±1. But since our hypothesis of no Reeb annuli in aM implies
that all of the compact leaves in aM are parallel and coherently oriented (Figure 6), it
then follows that DS is connected.

If we take a parallel copy y' of y lying on the A-side of -y, lying close to y, we can
make -y ' nA= a single point (Figure 7). But since clearly no compact loop of Tnam lies on
the A-side of y, no compact leaf of F lies near S on the A-side of S (otherwise, we could,
by taking an arc in S from a point of S limited on by compact leaves on the A-side toy,
we could conclude that these compact leaves intersect aM (in loops!) on the A-side of y).
This means we cam imagine (by pushing S o$' of itself in the A-direction) that y is bounded
by a surface S' which is parallel to S and does not intersect any compact leaves of F.

But since the set C of compact leaves of F is closed, S' and C are disjoint closed
subsets of M. By normality, there is then an open sets U, V of M such that CCU, S'CV,
and UnV=O1. But because L=LUcompact leaves, it follows that L\L{ is compact in L.
Otherwise, there is a sequence x,, in L\U with no limit in L; but then since M\U is (closed
in M, hence) compact, some subsequence has a limit (in the transverse direction) in M\Lt ).
This point is in L, but not in C, so would have to be in L, again contradicting the statement
we haven't proved yet.

Therefore, since S'nu=O, we have S'nL=S'n(L\u) is the intersection of two compact
surfaces. By wiggling S' slightly (keeping it in V) we can make this intersection transverse,
so S'n(L\U) consists of circles and arcs properly embedded in each (since the boundary of
one intersects the other only in their common boundary - this is clear for the boundary of
L\U coming from aM, and the other a-components of L\U come from au, which S' avoids).
But this quickly causes trouble; arcs have two endpoints, but where is the other endpoint
of the arc containing y'nA? This is the only point of OS'n(L\u)! This contradiction proves
the theorem, once we establish:

If L=LUcompact leaves, then L cannot limit transversely on itself. for if it did then if
we look at a transverse arc a through such a limit point x, every point y of B=Lna is a
limit point of B. If y~L, this is clear (y is a limit point, and this limiting must be from the



transverse direction rather than from in the leaf containing it) while if YEL, by joining it
to x by an arc in L and looking at the normal fence over this arc, by the usual argument,
we find arcs in L limiting down on this arc, giving, at the end y, a sequence of points in
L limiting down on y. Lna is therefore what is known as prefect. Of course, Lna is also
closed (in the interval a).

But a closed, perfect subset of an interval is uncountable (this is one of my favorite
facts that I have no idea how to prove!). so if L limits on itself, then Lna is uncountable.

But this is impossible, if L=LUcompact leaves. For LUa is countable (if it were
uncountable, the surface L would contain an uncountable discrete set, which is impossible).
On the other hand, (L\L)na must be finite; if it were infinite, since any compact leaf
intersects a in finitely-many points, there must be infinitely-many such compact leaves in
L; but then by choosing a point in each leaf (in a), we can find a sequence z,, each in a
distinct compact leaf L„, converging to some point z (which by our first result today is
in a compact leaf L'). But then we also know that for large enough n, the L n and L are
all parallel to one another; but by choosing three such leaves (Figure 8), with products in
between theirs, it is impossible for a single leaf L to limit on all of them - to limit on the
middle one, it must be in one of the two products, but whichever one it's in, the third leaf
cannot be limited on by L.

This finishes our proof of the theorem, which finishes our study of foliations arising
from disk decompositions, which more or less finishes what I wanted to present to you in
this class. I'll lecture next time on one of my favorite bizarre facts from foliation theory,
that Rs can be foliated by circles, mostly so I can get this last set of notes into your
hands. I don't plan to write that up, so this will be our last installment. I suppose these
notes could use a bibliography or something, but I don't know when I will get around to
it. Technically, I also owe you a, proof of that thing I skipped long ago, that an immersed,
null-homotopic loop in a surface can be turned into an embedded one by a sequence of
Reidemeister-like moves; I'll get to it one of these days!
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