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DECOMPOSABLE ORDERED GROUPS

ELIANA BARRIGA, ALF ONSHUUS, AND CHARLES STEINHORN

1. Introduction and Preliminaries

Definable groups in o-minimal structures have been studied by many authors
for well over twenty years. This context includes all real algebraic groups, complex
algebraic groups, and compact real Lie groups. One of the most striking results in
this area (see [5]) reveals a tight correspondence between definably compact groups
in o-minimal expansions of real closed fields and compact real Lie groups. In [8] the
second and third authors generalized the concept of o-minimality to include ‘higher
dimensional’ ordered structures.

It was soon apparent that the results in [8] have consequences for ordered groups
in this new context that would imply structure results for ordered real Lie groups
that might not be known to researchers in that area. This paper, which we outline in
the next paragraphs, develops these ideas and in particular undertakes an analysis of
‘low-dimensional’ ordered groups definable in a sufficiently rich o-minimal expansion
of a real closed field.

In Section 2 we work in the general framework introduced in [8], decomposable
ordered structures (Definition 1.2), under the additional assumption that a group
operation is defined on the structure. We call such a structure a “decomposable
ordered group."1 The main result at this level of generality is Theorem 2.11, which
asserts that any such group is supersolvable, and that topologically it is homeo-
morphic to the product of o-minimal groups.

To proceed further to classify ordered groups in this context, we must work out
the possible group extensions of a triple of a group, module, and action: while we
can prove the existence of a convex normal o-minimal subgroup (Theorem 2.8),
in order to use this inductively to determine the structure of the given ordered
group, we need to understand possible extensions. This forces us to restrict our
focus beginning in Section 3 to ordered groups that are definable in o-minimal
structures, and to develop the connection between group extensions and the second
cohomology group of the o-minimal group cohomology (Theorem 3.10).

With this material in hand, we make two additional assumptions beginning in
Sections 4 and 5 to make our analysis feasible. The first is that we work in an
o-minimal field R in which all o-minimal definable subgroups of R are definably
isomorphic. While this may seem at first to be a very strict assumption, as discussed
in 4 it is quite natural in our context. We make our second additional assumption
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that has long appeared in the literature (see [4], e.g.). Since our terminology appears only in
Section 2, we ask the reader to forgive any possible confusion.
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in Section 5, namely that in R every abelian definable extension of (R,+) by (R,+)
splits. The issue of whether such an extension splits is delicate; whereas it is not
difficult to show this for a nonabelian extension, in general we do not know if it
splits in the abelian case (see [10], e.g.)

For our analysis of ordered groups of dimension 2 and 3 in our setting, we first
determine these groups modulo definable group isomorphism. This is undertaken in
Section 5 for dimension 2 groups, culminating in Theorem 5.5. For the dimension 3
analysis, facts about group cohomology employing spectral sequence methods come
into play; these appear in the first author’s M.Sc. thesis [2] written under the su-
pervision of the second author and are presented here in Section 6. The dimension 3
analysis, carried out in Section 7, divides into four cases, each treated in a separate
subsection. The analysis in Sections 5-7 is extended in Section 8 to determine the
groups up to definable ordered group isomorphism.

The principal results obtained in this paper are collected in Section 9 in Sum-
maries 9.1-9.3. All the results in this paper apply to ordered groups that are
definable in the Pfaffian closure of the real field, and all the groups that appear
in our classification are real Lie groups. The connections with real Lie groups is
discussed in Section 9 as well.

For a reader not interested in o-minimal structures per se—or, for that matter,
our generalization—the natural question is to what extent our work gives a complete
characterization of ordered real Lie groups under the assumption that the order is
itself smooth (or analytic). First, the context in which we work does include all
real semi-algebraic ordered Lie groups (where the order is also defined by semi-
algebraic equations). In the general case, it is known that any compact Lie group
is isomorphic to a real algebraic subgroup of GL(n,R) (see, [6], e.g.), so is definable
in the real field and thus analyzable by o-minimal technology. While it also is not
difficult to find examples of Lie groups (both over the complex and real fields) that
are not definable in an o-minimal structure, the ordered group context rules out
all the examples known to us: to find an ordered real Lie group that does not fall
under our assumptions it would be necessary to find a torsion free group that is
diffeomorphic to R

n with both the order relation and the group operation given
by analytic functions, but which is not definable in the Pfaffian closure of the real
field.

With our synopsis of the paper complete, we conclude this section by recording
several definitions and results from [8] that we require.

Definition 1.1. Given a structure C, we say that a pair (X,<X) consisting of a
definable subset X and a definable linear order <X is o-minimal if every C-definable
subset of X is a finite union of (open) <X-intervals and points.

Definition 1.2. A (definable) linearly ordered set (X,<) in an ambient structure
C is decomposable if there are (C-) definable equivalence relations E1, . . . , En such
that

i. E1 is an equivalence relation on X with finitely many classes;
ii. For i = 1, . . . , n − 1, we have that Ei+1 is an equivalence relation on X

refining Ei;
iii For each i < n there is a definable linear order <i on the set of Ei+1-classes

such that for all w ∈ X the set

{

[x]Ei+1
| Ei(x,w)

}
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ordered by <i is a dense o-minimal set.
iv. For all w ∈ X , the set [x]En ordered by < (the order inherited from X) is

dense o-minimal.

If such a sequence of equivalence relations exist, we say that the sequence
〈E1, . . . , En〉 is a presentation of X . The empty sequence is a presentation of a
finite set.

If 〈E1, . . . , En〉 is a presentation of a decomposable set (X,<), we define the depth
of the presentation to be n, the number of equivalence relations in the presentation.

Some presentations are particularly easy to work with:

Definition 1.3. Let (X,<) be a linearly ordered set in an ambient structure C.

i. (X,<) is a 0-minimal set (has a minimal presentation of depth 0) if it is a
singleton and its presentation is the empty tuple.

ii. (X,<) is an (n+1)-minimal set (has a minimal presentation of depth (n+1))
if there is a family {Ib}b∈B of pairwise disjoint infinite dense o-minimal sets
such that X =

⋃

b∈B Ib and there is a definable order <B so that (B,<B)
is an n-minimal set.

If a set has a minimal presentation, its dimension can be easily defined, as we
now observe. We note that it is not difficult to show that the definition coincides
with topological dimension for definable sets in o-minimal theories.

Definition 1.4. Let (X,<) be decomposable in an ambient structure C. A minimal
decomposition of X is a partition of X into finitely many minimal sets.

We say that X has dimension n, denoted by dim(X) = n, if X has a minimal
decomposition into minimal sets whose maximal depth is n and at least one of the
minimal sets in the decomposition is an n-minimal set. The degree of X is m if X
has dimension n and m is least such that there is a minimal decomposition of X
which contains m distinct n-minimal sets.

Fact 1.7, below, provides that a decomposable set has a minimal decomposition.
We require one additional definition to state Fact 1.6, the main result in [8].

Definition 1.5. A presentation 〈E1, . . . , En〉 of a definable set (X,<) in an ambient
structure C is called a lexicographic presentation if for every x ∈ X and every i ≤ n
the class [x]Ei is convex with respect to < and for each i ≤ n the order (X/Ei, <i)
given by the definition of a presentation is the order inherited from (X,<) (by
convexity the order is unambiguosly defined by any of the representatives of the
class).

Fact 1.6 (Theorem 5.1) in [8]). Every decomposable set X can be partitioned into
finitely many subsets, each of which has a lexicographic presentation.

We also shall avail ourselves of the next fact; it is Lemma 5.2 in [8].

Fact 1.7. Let {Xj}j∈J be a (definable) family of decomposable subsets in a decom-
posable set X with uniformly definable non-redundant presentations of dimension
n. Then there are a positive integer k and, for each j ∈ J , sets Y j

1 , . . . , Y
j
k that

partition Xj such that:

i. for each i ≤ k the family {Y j
i }j∈J is a definable family of minimal sets

whose presentations are given uniformly definably;
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ii. for each j ∈ J and i ≤ k for which Y j
i is n-minimal, the ordering given

by its presentation is the restriction of the ordering on Xj given by its
presentation.

In particular, if the family is just the singleton {X} and the presentation of X is
lexicographic, then so are the presentations of the n-minimal sets.

Corollary 1.8. Let 〈E1, . . . , En〉 be a presentation of X. Then there is a presen-
tation 〈E′

1, . . . , E
′
n〉 of X such that the restriction of 〈E′

1, . . . , E
′
n〉 to any of the the

E′
1-classes of dimension n is a minimal lexicographic presentation.

Throughout the paper we will work in the category of definable groups in some
o-minimal expansion of a real closed field. So all groups, homomorphisms and
actions will be assumed to be definable.

2. Existence of a normal convex o-minimal subgroup

We here prove Theorem 2.8, which asserts that every decomposable ordered
group G has an o-minimal convex normal subgroup. This implies (Theorem 2.11)
that every such group is solvable and as an ordered set is isomorphic to a finite
lexicographic product of o-minimal groups. In particular, if the groupG is definable
in an o-minimal structure M in which every two definable o-minimal groups are
(definably) isomorphic—at least those that appear as quotients in the normal chain
witnessing that G is solvable—it follows that G as an ordered set is isomorphic to
Mn ordered lexicographically. In fact, with the subset topology this isomorphism is
a homeomorphism. Although the context in which all definable o-minimal groups
are isomorphic may seem overly restrictive, it is not so: we say more about this in
Section 4.

Throughout this section G denotes a decomposable ordered group. The proof
of Theorem 2.8 proceeds as follows. We first apply Fact 1.6 and Corollary 1.8 to
give adequate presentations of G and state some properties of the presentations we
obtain in our context. We then prove the existence of a presentation in which each of
the finest equivalence classes is an o-minimal convex interval. This implies Theorem
2.8 via an analysis of how the group structure interacts with this presentation.

We begin by some easy consequences of the results in [8] applied to groups.

Proposition 2.1. An ordered decomposable group G is dense with respect to its
order <. That is, no element in G has an immediate successor under <.

Proof. By group translation, if one element has an immediate successor then all
elements do. This implies the existence of infinite discretely ordered chains, which
is impossible in a decomposable structure, as no ordered theory with an infinite
discrete chain satisfies uniform finiteness. �

Let 〈E1, . . . , En〉 be a presentation of G as provided by Corollary 1.8. Addition-
ally let C1, . . . , Ck, Ck+1, . . . , Ct be an enumeration of the finitely many E1-classes
such that G = C1 ∪ · · · ∪ Ct, gives a decomposition of X into sets with minimal
lexicographic presentations such that dim(Ci) = dim(G) = n for 1 ≤ i ≤ k. For
the remainder of this section, we assume that G is presented this way.

As in [8], for 1 ≤ i ≤ t and x ∈ Ci we define the gap of x in Ci with respect to
G, denoted gap(x,Ci, G), by
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{x}∪{y ∈ G | y > x ∧ (∀z ∈ Ci) z > x→ z > y}
∪ {y ∈ G | y < x ∧ (∀z ∈ Ci) z < x→ z < y}.

It is easy to see that if gap(x,Ci, G) is finite but not a singleton, then some element
of gap(x,Ci, G) is an immediate successor of x. This yields a direct corollary of 2.1.

Proposition 2.2. For all x ∈ Ci the set gap(x,Ci, G) is either a singleton or
infinite.

Let 1 ≤ i ≤ k. Observe that additivity of dimension implies that the set of all
x ∈ Ci for which gap(x,Ci, G) is infinite has dimension at most n− 1. By reg(Ci)
we denote the set of all x ∈ Ci such that gap(x,Ci, G) is a singleton. Thus, if
E1, . . . , En is a minimal lexicographic decomposition for Ci, then the set of En-
classes that contain an interval in reg(Ci) has dimension n − 1; even more, the
set of such En-classes has codimension less than n − 1. Since the En-classes are
o-minimal and convex in Ci, it follows that

gap(x,Ci, G) = gap(x, [x]En , G).

Proposition 2.3. Let I be an o-minimal subset of G. Then gap(a, I,G) = {a} for
all a ∈ I if and only if I is convex in G.

Proof. Only the left-to-right implication requires any argument. By o-minimality
of I there is some a ∈ I for which, without loss of generality, there is some b ∈ G\ I
such that x < b < a for all x ∈ I with x < a. Thus b ∈ gap(a, I,G), as required. �

The following is an immediate consequence of the proposition above and the
discussion preceding it.

Lemma 2.4. Let 1 ≤ i ≤ k and I be an interval contained in an En-class in Ci

such that I ⊂ reg(Ci). Then I is convex in G. In particular, the set of all x ∈ Ci

contained in such an interval has dimension n (in fact, codimension less than n).

Proof. Let x ∈ I. Since I is a convex subset of [x]En which, since the presentation
of Ci is lexicographic, is a convex subset of Ci, we have

gap(x, I,G) = gap(x,Ci, G).

As I ⊆ reg(Ci) it follows by 2.3 that I is convex in G. �

We now denote by reg(G) the set of all x ∈ G such that there is a convex
o-minimal Ix ⊂ G with x ∈ Ix.

Lemma 2.5. Let I be convex in G and x ∈ I. Then there is some j and some
o-minimal convex I ′ ⊂ Cj ∩ reg(G) such that {x}∪I ′ is convex in G. If x 6∈ I ′ then
I ′ can be chosen so that x < I ′ and x is an infimum for I ′ in G.

Proof. Let x and I be given by hypothesis, and let y ∈ reg(G) with Iy the o-minimal
open interval witnessing this. Put Fx := Iy · y−1 · x. Then Fx is an o-minimal,
convex open interval around x, and hence I ∩ Fx also is a convex o-minimal set.
We have that

Fx ∩ I :=
⋃

1≤j≤t

(Fx ∩ I ∩ Cj)

partitions Fx ∩ I, and by o-minimality is a finite union of intervals and points.
This implies that either x belongs to some (convex) interval Fx ∩ I ∩ Cj , or x is a
limit point of some Fx ∩ I ∩ Cj with x < Fx ∩ I ∩ Cj (by construction x cannot
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be a supremum of Fx). The assertion that x the infimum of such a set follows
immediately by Fact 2.1. �

For a convex set I we define cl− (I) to be the set consisting of I and, if it exists,
the infimum of I. Notice that cl− (I) \ I is at most a singleton. We now are in
position to prove the following, which takes us close to the proof of Theorem 2.8.

Lemma 2.6. Let G be a decomposable ordered group. Then there is a lexicographic
presentation 〈F1, . . . , Fn〉 of G such that each Fn-class is an infinite convex o-
minimal set.

Proof. Let 〈E1, . . . , En〉 be a lexicographic presentation of G such that each E1

class of dimension n are minimal, as guaranteed by Corollary 1.8.
We now restrict the presentation 〈E1, . . . , En〉 to reg(G); as we do not use the

original presentation on G in what follows, we continue to use the same notation.

Claim 2.7. There is a presentation 〈E′
1, . . . , E

′
n〉 of reg(G) refining 〈E1, . . . , En〉

such that the E′
n-classes are precisely the convex (connected) components of the

original En-classes.

Proof. Define a new equivalence relation En+1 on the En classes by

aEn+1b if and only if ∀x (a ≤ x ≤ b⇒ xEna) .

By the definition of reg(G) and o-minimality, each En-class contains only finitely
many En+1 classes, all of which are infinite convex o-minimal intervals. By uniform
finiteness, there is an absolute bound k for the number En+1-classes in a single En

class. By separating each of the En+1-classes we can partition reg(G) into the sets
C1, . . . , Ck such that for all 1 ≤ i ≤ k we have

a. aEn+1b⇒ a ∈ Ci ⇔ b ∈ Ci

b. aEnb ∧ a, b ∈ Ci ⇒ aEn+1b.

We then satisfy the claim by defining E′
j for j < n via

aE′
jb if and only if aEjb ∧

∧

i≤k

a ∈ Ci ⇔ b ∈ Ci

and setting

aE′
nb⇔ aEn+1b.

�

Let 〈F1, . . . Fn〉 be the presentation of G given by

aFib ⇔ ∃x, y ∈ reg(G)
(

xE′
iy ∧ a ∈ cl−

(

[x]E′

n

)

∧ b ∈ cl−
(

[y]E′

n

))

for each i ≤ n. By Lemma 2.5 we see that 〈F1, . . . Fn〉 is indeed a presentation of
G and it follows easily that this presentation of G has the desired properties. �

We can now prove the main result of this section.

Theorem 2.8. Let (G,<, ·) be an ordered group that is decomposable. Then there
is a convex normal o-minimal subgroup H EG.
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Proof. By Lemma 2.6 we may assume that we are given a lexicographic decomposi-
tion 〈E1, . . . En〉 of G such that each En-class is an infinite o-minimal convex subset
of G. Throughout this proof, we refer to these classes as the o-minimal fibers of G.

Let F0 be the En-class containing the identity element e and denote by F+
0 the

positive elements in F0. We refer to a convex subset of G that has e as a left
endpoint as a ray of G. For a ray X put Sq(X) := {x2|x ∈ X}.

Claim 2.9. Let X := I1 ∪ · · · ∪ Ik be a ray such that each Ij for j ≤ k is a convex

o-minimal set, and let Sq(X) be the convex closure of Sq(X). Then Sq(X) \ Sq(X)

is finite. In particular, Sq(X) has dimension 1.

Proof. Let a ∈ Sq(X) \ Sq(X), and let
√
a := {y ∈ X | y2 < a}. It is easy to show

that
√
a has no supremum in X . Indeed, were b ∈ X the supremum of

√
a, then

b2 > a and thus for some w < b we have b · x = a Then, for every u ∈ √
a with

u > w there is some v < b with u · v = a. Then the square of the greater of u and
v is greater than a, which is impossible. Hence by o-minimality and convexity

√
a

must be equal to I1 ∪ · · · ∪ Ij for some j ≤ k, which implies that there are at most

k − 1 elements of Sq(X) \ Sq(X). �

Let F1 be the set of positive elements in fibers containing a point in Sq(F0), which
by Claim 2.9 has dimension 1. By convexity it must be equal to a disjoint union
of finitely many o-minimal fibers, only the first of which may not be a complete
En-class.

For n ≥ 1 we recursively define

Fn+1 :=
{

x > 0 | ∃y
(

y ∈ Sq(Fn) ∧ xEny
)}

.

An easy induction shows for all n that Fn is a finite union of o-minimal fibers
(together with and the positive elements in the fiber of the identity e). But since
G/En is a decomposable ordered structure, it cannot have infinite discrete chains
so for some n we have Fn = Fn+1.

With Fn = Fn+1 we have Sq(Fn) ⊆ Fn, and by convexity it follows that F+
n ·

F+
n ⊂ F+

n . Closing F+
n under inverses we obtain a one-dimensional convex subgroup

N of G. Arguing as in the proof of Claim 2.9 above, we see that N is a convex
o-minimal subgroup of G.

It remains to prove that N is normal. For this, observe that aNa−1 is a convex
subgroup of G of dimension 1 and thus Na := N ∩ aNa−1 is a convex subgroup of
N . By o-minimality Na = N , whence N is normal. �

The following is an easy and important consequence of Theorem 2.8.

Corollary 2.10. Let G be a decomposable ordered group. Then there is a normal
o-minimal ordered subgroup N of G and a decomposable ordered group H such that

1 → N → G→ H → 1

is an exact sequence of ordered groups, where each of the homomorphisms is a
homomorphism of ordered groups.

Proof. Theorem 2.8 provides the existence of the normal o-minimal subgroup N ,
and by convexity G/N is an ordered group. If the ground theory eliminates imag-
inaries, the fact that both groups are decomposable follows from Theorem 4.1 in
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[8]. In our case, the result follows by the proof of Theorem 2.8, in particularly from
the re-fibering given by Lemma 2.6. �

And from this, an easy induction shows the following.

Theorem 2.11. Every ordered decomposable group G is supersolvable and home-
omorphic to a finite product of o-minimal structures. Even more, any ordered
decomposable group (G,⊙, <G) has a supersolvable decomposition

H0 EH1 EH2 E · · ·EHn = G

such that Hi+1/Hi is an o-minimal group, Hi is a normal subgroup of G, and the
order <G is given by the lexicographic order induced by the order on the quotients
Hi+1/Hi.

3. Cohomology of groups definable in o-minimal theories

In this section we survey some of the definable group cohomology that we shall
need; this material was introduced in [3] and further developed by the first author
in her M.Sc. thesis written under the supervision of the second author. Throughout
this section when we state that a group is interpretable or definable, we mean, if
not stated explicitly otherwise, that it is interpretable or definable in an o-minimal
structure.

A reader familiar with group extensions and the cohomology of groups may recall
that for a group G and normal subgroup H E G, the existence of a section from
G/H to G makes a big difference in whether or not G is an extension of G/H
by H . This hypothesis must be included in the definition of a group extension in
order for there to be an isomorphism between the respective cohomology groups
and the group extensions. With this in mind, we begin with the following theorem
of Edmundo (see Corollary 3.11 in [3]).

Fact 3.1. Let U be a definable group in an o-minimal structure and N E U a
definable normal subgroup. Then there is a definable group H, a definable exact
sequence

0 → N → U → H → 1

and a definable section

s : H → U.

We now make a series of definitions.

Definition 3.2. Let H be a definable group in an o-minimal structure. A definable
H-module (N, γ) is a H-module such that N is a definable abelian group and the
action map γ : H × N → N given by γ (x, a) := γ (x) (a) is definable. As usual γ
is usually called an action of H on N and γ is trivial if γ (g) (a) = a for all g ∈ H
and a ∈ N .

Observe that an action γ as above induces homomorphism γ : H → Aut (N)
from H to the group of all definable automorphisms of N .

Definition 3.3. Two actions γ1 and γ2 of H on N are definably equivalent if there
is a definable group automorphism ψ of H such that γ1 = γ2 ◦ ψ.
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Definition 3.4. Let H be a definable group and let N be a definable H-module;
equivalently, let γ : H → Aut(N) be a definable action of H on N . We say that U
is an extension of H by N via γ if there is an exact sequence

1 → N
i−→ U

π−→ H → 1

such that for all h ∈ H , g ∈ U with π(g) = h, and n ∈ N we have

γ(h)(n) := gng−1.

We often use the notation (U, i, π) to denote an extension of H by N as above, and
also write γ(h)(n) as nγ(h).

3.1. The cochain complex for a G-module and cohomology. We here re-
call some fundamental properties of o-minimal group cohomology as defined in [3].
Let H be an o-minimal definable group, and let (N, γ) be an H-module with ac-
tion γ. To distinguish the operations on H and N , we write the operation on H
multiplicatively while the operation on N is written additively.

The next definitions in the o-minimal case can be found in [3].

Definition 3.5. For n ∈ N\{0}, we denote by Cn (H,N, γ) the (abelian) group con-
sisting of the set of all functions fromHn toN , and for n = 0 we put C0 (H,N) = N .
The elements of Cn (H,N, γ) are called n-cochains. If the action γ is clear from the
context we sometimes write Cn (H,N) instead of Cn (H,N, γ).

Definition 3.6. The coboundary function δ : Cn (H,N, γ) → Cn+1 (H,N, γ) is
defined by

δ (f) (g1, . . . , gn+1) = γ (g1) (f (g2, . . . , gn+1))

+
n
∑

i=1

(−1)i f (g1, . . . , gigi+1, . . . , gn+1)

+ (−1)
n+1

f (g1, . . . , gn) .

It is clear that δ (f) ∈ Cn+1 (H,N, γ) and as is standard δ ◦ δ = 0. Thus (C, δ) is a
definable cochain complex and we have

Definition 3.7. For n ≥ 0 the cohomology groups of the complex (C, δ) are given
by

Hn (H,N) = Hn (H,N, γ) =
Zn (H,N, γ)

Bn (H,N, γ)
,

where
Zn (H,N, γ) = ker δ : Cn (H,N, γ) → Cn+1 (H,N, γ),

B0(H,N, γ) = {0} and for n > 0

Bn (H,N, γ) = im δ : Cn−1 (H,N, γ) → Cn (H,N, γ).

The elements of Zn (H,N, γ) are the cocycles and the elements of Bn (H,N, γ)
coboundaries of the cochain complex.

By standard methods in group cohomology—employed by Edmundo in [3] for
o-minimal group cohomology—it can be shown that if the action γ : H → Aut(N)
is fixed, then the group of classes of group extensions of H by N is isomorphic to
group of classes of 2-cocycles in H2(H,N, γ). Even more, given such a 2-cocycle
one can recover the group operation on the extension. In the o-minimal context we
have the important result from [3].
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Fact 3.8. Let H,N be groups definable in an o-minimal structure, and let γ be a
definable group action of H on N . Then the group of equivalence classes of group
extensions of H by N via γ (modulo isomorphism) is isomorphic to the the group of
equivalence classes of definable 2-cocycles in H2(H,N, γ). In fact, given a definable
2-cocycle c one recovers the group operation by

(a, g) · (b, h) := (a+ bγ(g) + c(g, h), gh)

for all (a, g), (b, h) ∈ N ×H.

We now make an easy observation that allows us to move back and forth between
the definable group context and the definable ordered group context.

Proposition 3.9. Let G be an ordered group and N be a convex normal subgroup,
both definable in an o-minimal structure. Then G is an extension of G/N by N with
an action given by a morphism from G/N into the order preserving automorphisms
of H.

Proof. For any g ∈ G and any n1 < n2 ∈ N we have, by the definition of an
ordered group, that gn1g

−1 < gn2g
−1. Since the action of h ∈ G/H on N is given

by conjugation of any representative g of the class of h, the proposition follows. �

The following theorem is the main result of this section. Together with Propo-
sition 3.9 it allows us to use cohomology of groups to characterize ordered groups
definable in o-minimal structures.

Theorem 3.10. Let (H, ·) and (N,+) be two definable ordered groups and let
γ : H → Aut(N) be a definable group action of H on N such that for all h ∈ H we
have that γ(h) is an order preserving definable automorphism of N . Then there is
a one-to-one correspondence between the 2-cocycles in H2(H,N, γ) and the group
extensions of H by N which, when endowed with the lexicographic order <l given
first by H and then by N , become ordered groups.

Proof. The right-to-left direction of the correspondence is given by the classic result
for groups and Proposition 3.9.

For the other direction, let c(x, y) ∈ Z2(H,N, γ). We define a group structure
on N ×H by

(a, g)⊙ (b, h) := (a+ bγ(g) + c(g, h), gh).

We need only show that if (b, h) <l (d, j) then (a, g) ⊙ (b, h) <l (a, g) ⊙ (d, j).
Since H is an ordered group, if h <H j then gh <H gj then by definition of the
lexicographic order <l we are done.

So we may assume that h = j and b <N d. Since gh = gj we must prove that

a+ bγ(g) + c(g, h) < a+ dγ(g) + c(g, j).

This is immediate: c(g, h) = c(g, j) and by hypothesis γ(g) for g ∈ H is an order
preserving automorphism of N , whence b <N d implies bγ(g) <N dγ(g). �

4. Restricting the class of structures: The Pfaffian closure of the

real field

In the (pure) real field, the additive group (R,+) and multiplicative subgroup
(R+, ·) are not definably isomorphic. This implies, for example, that the four groups
(R,+)×(R,+), (R+, ·)×(R,+), (R,+)×(R+, ·), and (R+, ·)×(R+, ·), ordered lexi-
cographically, are not definably isomorphic. Of course, in the real exponential field
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(R,+, ·, ex) these four groups become definably isomorphic. While our overarching
goal is to characterize ordered groups definable in an o-minimal structure, we prefer
not to focus on structures in which the existence of such isomorphisms is an issue.2

We therefore concentrate in what follows on o-minimal structures in which this is
not a concern. The issue of whether a definable isomorphism between the additive
and multiplicative groups exists in an o-minimal expansion of the real field is not
specific to these groups. The following result appears in [9], but follows from results
in [3] and [12].

Fact 4.1. Let M be an o-minimal expansion of the field of real numbers in which
there are two nonisomorphic definable o-minimal groups H and G. Then there is an
ordered group isomorphism ϕ : H → G such that the structure (M,ϕ) is o-minimal.
In fact, if G is the additive group of the real field, then ϕ lies in the Pfaffian closure
of the real field.

Hence, in the Pfaffian closure of the real field all o-minimal definable groups are
isomorphic. In view of the foregoing discussion, we find it natural to expand the
language so all such groups are definably isomorphic and therefore in what follows
we assume that

(∗) we work in an o-minimal field R such that all o-minimal definable subgroups
of R are definably isomorphic.

In particular, notice that R is an exponential real closed field. This assumption
yields an immediate sharpening of Theorem 2.11.

Corollary 4.2. Let G be an ordered group definable in R as above with universe
R. Then G is supersolvable and homeomorphic to R

n. Specifically, G admits a
supersolvable chain H0EH1EH2E· · ·EHn = G such that Hi+1/Hi is R-isomorphic
to (R,+) and the order <G is given by the lexicographic order induced by the order
on the quotients Hi+1/Hi.

5. Dimension two groups

We now apply Theorem 3.10 to analyze groups of dimension two in R, an o-
minimal expansion of a real closed field satisfying (∗), that is, in which all o-minimal
groups are isomorphic. All objects in this section are assumed to be definable in R.
Even though all the results in this section hold in this context, for concreteness we
shall take R to be an o-minimal expansion of the field of real numbers R in which
all o-minimal groups are isomorphic. We also shall abuse notation by referring to
R as the additive group and by R

n as the cartesian product of n copies of the
additive group R. Note from (∗) that if N is an o-minimal group definable in R
then Aut(N), the group of definable automorphisms of N , is isomorphic to (R\0, ·).
In particular, the group of order preserving automorphisms is (isomorphic to) the
connected component (R>0, ·), which is definably isomorphic to (R,+).

We also shall have to adopt an additional hypothesis for the results we prove
here. Let (R,+) a definable (R,+)-module with action γ and a definable extension

1 → R → G→ R → 1

be a definable extension. The issue of whether the extension splits is delicate; in
general we do not know if it splits if G is abelian, see [10] (in this situation it is

2The interested reader is invited to peruse the excellent survey [7] for more on this topic.
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not difficult to show that the nonabelian case splits). Thus we need to add another
condition on our structure R:

(∗∗) In R every abelian definable extension of R by R splits.

Under this assumption, combining the known nonabelian case with Fact 3.8), we
find that

H2 (R,R, γ) = {0}
for all actions γ of R on R.

Our goal in this section is Theorem 5.5 in which we completely describe all
extensions of R by R, and moreover all decomposable ordered groups of dimension
2 definable in R under the assumptions (∗) and (∗∗). The key ingredient in the
proof of this theorem is Theorem 5.3, which asserts that for any two definable
nontrivial actions γ and γ′ of R on R, the extensions R ⋊γ R and R ⋊γ′ R are
definably isomorphic groups.

We require the following two facts about definable group actions that can be
found in [2].

Fact 5.1. Let (R,+) be a definable R
n-module with nontrivial action γ. Then

γ (x1, . . . , xn) = ec1x1+...+cnxn ,

where ci 6= 0 for some i ∈ {1, . . . , n}.
Fact 5.2. Let γ′ ((x1, . . . , xn)) = ec1x1+...+cnxn and γ ((x1, . . . , xn)) = ex1 be non-
trivial actions for which ((R,+) , γ) and ((R,+) , γ′) are definable R

n-modules.
Then γ and γ′ are definably equivalent.

We now have

Theorem 5.3. Let ((R,+) , γ) and ((R,+) , γ′) be definable R-modules with non-
trivial actions γ and γ′. Then R ⋊γ R and R ⋊γ′ R are definably isomorphic.

Proof. By Fact 5.1, we may assume that γ (y) = ecy and γ′ (y) = edy, for non-zero
real constants c and d. We now assert that the bijection

R ⋊γ R → R ⋊γ′ R

(x, y) 7→
(

x,
c

d
y
)

is a group isomorphism. Indeed

(x1, y1)⊗ (x2, y2) = (x1 + ecy1x2, y1 + y2) 7→
(

x1 + ecy1x2,
c

d
(y1 + y2)

)

and
(

x1,
c

d
y1

)(

x2,
c

d
y2

)

=
(

x1 + ecy1x2,
c

d
(y1 + y2)

)

.

�

Notice in the proof above that if γ and γ′ are order preserving, then by Propo-
sition 3.9 and Theorem 3.10 the groups are ordered groups under the lexicographic
order, and it is easy to verify that the map above preserves this ordering if and only
if c/d > 0. We here restrict our attention to understanding the group isomorphisms
between the ordered groups that arise. In Section 8 we work to understand these
ordered groups modulo ordered isomorphism.
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Remark 5.4. In view of Theorem 5.3, when we write the semidirect product R⋊R,
we take the action to be γ (x) = ex.

Theorem 5.5. Let (R,+) be a definable R-module. Then, modulo definable iso-
morphisms, the only possible definable extensions of R by R are (R× R,+) and
R ⋊ R. Furthermore, the only possible decomposable groups of dimension 2 defin-
able in R are, modulo definable group isomorphisms, (R× R,+) and R ⋊ R, both
ordered lexicographically.

Proof. The first assertion is a direct consequence of our assumptions, Theorem 5.3,
and the fact that R⋊R is not isomorphic to (R× R,+). For the second assertion, we
first note that Theorem 2.8 implies the existence of a unique convex one dimensional
o-minimal subgroup. Then applying Proposition 3.9, and Theorems 3.10 and 5.3, it
follows that any two definable ordered groups with underlying domain (R× R,+),
respectively, R ⋊ R, are isomorphic as ordered groups. �

6. Spectral sequences

Our goal in this and the ensuing section is to classify all dimension 3 ordered
groups definable an o-minimal expansion of a real closed field R, under the ongoing
assumptions (∗) and (∗∗). Generally speaking, we shall work to understand all
such groups inductively, by analyzing them as extensions of their convex normal
o-minimal subgroup N and the (2-dimensional) quotient H := G/N .

Before we can analyze the cases that arise, we require some facts about the
cohomology groups of definable modules in R. Some of this work relies on the
study of spectral sequences that the first author developed in her M.Sc.thesis; all
the background needed is developed in [1] and can be found in [2]. The notation is
standard and may be found in, e.g., [13].

As in Section 5, all objects are assumed to be definable in R, and although our
results hold under in general under the hypotheses (∗) and (∗∗), for concreteness
we take the underlying domain of R to be R (such as if we work in RPfaff ). In fact
we abuse notation in what follows by referring to R as the additive group of the
field and we also write

(

R
2,+

)

for (R× R,+).
The following, which appears as Corollary 3.8 in [2], plays a crucial role.

Fact 6.1. Let (M,γ) be a definable G-module and K a definable normal subgroup

of G. For the definable cochain complex

(

C = ⊕
n≥0

Cn (G,M, γ) , δ

)

there are fil-

trations of the groups H1 = H1 (G,M, γ) and H2 = H2 (G,M, γ) of the form

{0} ≤ F 1H1 E H1

and

{0} E F 2H2 E F 1H2 E H2

such that

F 1H1 = H1
(

G/K,MK
)

, H1/F 1H1 ≤
(

H1 (K,M)
)G/K

,
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and

F 2H2 =
H2

(

G/K,MK
)

im d : (H1 (K,M))
G/K → H2 (G/K,MK)

,

F 1H2/F 2H2 ≤ H1
(

G/K, H1 (K,M)
)

,

H2/F 1H2 =
(

H2 (K,M)
)G/K

.

If G is a group acting on the additive group (R,+), then Cn(G,R) is a R-module
by definition, a property that is inherited by the quotients Hn(G,R). With this
observation, the following follows immediately from Fact 6.1.

Corollary 6.2. Let G be a group with an action γ on the additive group (R,+),
the additive group of R, and let K be a definable normal subgroup of G. Then the
following hold:

(1) If H2
(

G/K,RK
)

, H1
(

G/K, H1 (K,R)
)

, and
(

H2 (K,R)
)G/K

are all trivial

groups, then H2 (G,R, γ) is trivial.

(2) If one of H2
(

G/K,RK
)

, H1
(

G/K, H1 (K,R)
)

, and
(

H2 (K,R)
)G/K

is iso-

morphic to R and the other two are trivial groups, then H2 (G,R, γ) is
either the identity or isomorphic to R.

Proof. The first assertion is clear. For the second, since a nontrivial (vector)-
subspace of a field must be the field itself, the only sub-R-module of R other than
the identity, is R itself. �

7. Ordered decomposable groups of dimension 3

Now we classify all dimension 3 ordered groups definable in an o-minimal ex-
pansion of a real closed field satisfying the ongoing assumptions (∗) and (∗∗). This
analysis ultimately breaks up into cases as follows. Suppose that G is an ordered
group of dimension 3 in R. By Theorem 2.8, there is a convex, normal o-minimal
subgroup N of G such that H := G/N under the inherited ordering is one of the
two definable ordered subgroups of dimension 2 (up to isomorphism) determined
in Theorem 5.5. Moreover the natural conjugation of N by H (bear in mind that
N is abelian) is a definable order-preserving action making N into a definable H-
module. Our classification now divides into cases depending on H and on whether
or not the action is trivial, and each possibility will be treated in turn.

In view of the facts presented in Section 6, it is important to understand the
cohomology groups of smaller dimensional group extensions.

Lemma 7.1. Each of the following holds.

(1) Let (R, γ) be a definable G-module. If γ is the trivial action, then
H0 (G,R, γ) = R. If γ is a nontrivial action, then H0 (G,R, γ) = {0}.

(2) Let (R,+) be the definable (Rn,+)-module with the trivial action. Then
H1 (Rn,R) ≃ (Rn,+).

(3) Let (R,+) be a definable R
n-module with a nontrivial action. Then

H1 (Rn,R) = {0}.
(4) Let (R,+) be a definable (R,+)-module. Then H2 (R,R) = {0}.

Proof. The first three items are proved in [2]. They follow easily from the facts that
H0 (G,M, γ) = MG = {m ∈M : (∀g ∈ G) (γ (g)x = x)} and that H1 (G,M, γ) is



DECOMPOSABLE ORDERED GROUPS 15

the set of crossed homomorphisms from G to M modulo principal homomorphisms,
as in the general group homomorphism setting.

The last item follows immediately from Theorems 3.10 (or Fact 3.8) and our
assumptions. �

We also shall avail ourselves of the following facts ([2, Propositions 2.3, 2.4]),
both easy consequences of the o-minimality of R.

Fact 7.2. Let G be a definable group in R whose operation is denoted multiplica-
tively. Let f , g be two definable homomorphisms from (R,+) into G. If f (1) = g (1)
then f = g.

Fact 7.3. Let (G,⊕) and (G′,⊙) definable groups in R with G ⊆ Rm, G′ ⊆ Rn,
and G infinite. If ⊕ and ⊙ are continuous and f : (G,⊕) → (G′,⊙) is a definable
homomorphism, then f is continuous.

We will now start with a case by case analysis of the different possible 3-
dimensional ordered groups.

7.1. H = R× R and the action of H on R is trivial.

We wish to prove that H2
(

R
2,R

)

≃ (R,+). As a first step we apply Lemma 7.1
and Corollary 6.2 to bound this cohomology group.

Lemma 7.4. Let (R,+) be a definable
(

R
2,+

)

-module with the trivial action. Then

H2
(

R
2,R

)

≤ (R,+).

Proof. Let K = {(0, x) |x ∈ R} E
(

R
2,+

)

. It is easy to see for all j ≥ 0 that

Hj (K,R) is a R
2
/K-module with trivial action. By Lemma 7.1 we have

H2
(

R
2
/K,RK

)

= H2 (R,R) = {0}
H1

(

R
2
/K, H1 (K,R)

)

= H1 (R,R) = (R,+)

H0
(

R
2
/K, H2 (K,R)

)

= H2 (R,R)
R
= {0} .

The lemma now follows by Corollary 6.2. �

To complete the proof that H2
(

R
2,R

)

≃ (R,+) we produce an extension that
is not isomorphic to the trivial one.

Definition 7.5 (The Heisenberg group). The Heisenberg group is the group SUT (3,R),
the set of all the upper triangular matrices with real entries of the form





1 x z
0 1 y
0 0 1





with the group operation given by matrix multiplication.

For the calculations that we carry below, we use the following presentation of the
Heisenberg group. Let the operation · on R

3 be given by

(x1, y1, z1) · (x2, y2, z2) =
(

x1 + x2, y1 + y2, z1 + z2 +
1

2
det

[

x1 y1
x2 y2

])

.

With this operation
(

R
3, ·

)

is a group that we denote by GHeis.
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Observe that SUT (3,R) ≃ GHeis via the isomorphism




1 x z
0 1 y
0 0 1



 7→
(

x, y, z − 1

2
xy

)

.

The construction of GHeis can be generalized as follows.

Definition 7.6. For c ∈ R\ {0}, let Ec be the group on R
2×R with product given

by

((x1, y1) , z1) · ((x2, y2) , z2) =
(

(x1 + x2, y1 + y2) , z1 + z2 + c det

[

x1 y1
x2 y2

])

.

The next assertion is an easy calculation.

Proposition 7.7. Let i (z) = ((0, 0) , z), π ((x, y) , z) = (x, y), and c ∈ R \ {0}.
Then 0 → R

i→ Ec
π→ R

2 → 0 is a definable extension of R2 by R.

We thus have

Theorem 7.8. Let (R,+) be a definable
(

R
2,+

)

-module with the trivial action.

Then H2
(

R
2,R

)

≃ (R,+).

Proof. Recall that H2
(

R
2,R

)

carries the structure of an R-vector space. Indeed,

for [f ] a nonzero element of H2
(

R
2,R

)

let α[f ] := [αf ], where α ∈ R. Combining

this fact and Lemma 7.4 we see that H2
(

R
2,R

)

is either {0} or R. Proposition 7.7

above provides a nontrivial extension, hence H2
(

R
2,R

)

≃ R. �

One can in fact show more: the family of nontrivial extensions is given precisely
by the family of groups Ec.

Proposition 7.9. Let c, d ∈ R \ {0}. If c 6= d then the extensions (Ec, π) and
(Ed, π) are not definably equivalent.

Proof. For a contradiction suppose that there is a definable homomorphism ϕ :
Ec → Ed making the diagram below commute:

0 // R
i

//

i
��❅

❅❅
❅❅

❅❅
❅ Ec

ϕ

��

π
// R2 // 0

Ed

π

>>⑥⑥⑥⑥⑥⑥⑥⑥

.

As π ◦ ϕ (((1, 0) , 0)) = (1, 0) and π ◦ ϕ (((0, 1) , 0)) = (0, 1), it follows that
ϕ (((1, 0) , 0)) = ((1, 0) , s) and ϕ (((0, 1) , 0)) = ((0, 1) , t) for some t, s ∈ R. Let
the definable homomorphisms h1, h2 : R → Ed be defined by h1 (x) = ((x, 0) , xs),
h2 (x) = ((0, x) , xt). Since the subgroup of Ec consisting of all elements of the
form ((y, 0) , 0) is isomorphic to (R,+), and we have h1 (1) = ϕ (((1, 0) , 0)) and
h2 (1) = ϕ (((0, 1) , 0)), Fact 7.2 implies that ϕ (((x, 0) , 0)) = ((x, 0) , xs) and
ϕ (((0, x) , 0)) = ((0, x) , xt) for all x ∈ R.

In Ec we have

((0, 0) , z − cxy) · ((x, 0) , 0) · ((0, y) , 0) = ((x, y) z) ,

which, since ϕ ((0, 0) , w) = ((0, 0) , w) for all w ∈ R, implies that
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ϕ ((x, y) , z) = ϕ ((0, 0) , z − cxy) · ϕ ((x, 0) , 0) · ϕ ((0, y) , 0)

= ((0, 0) , z − cxy, ) · ((x, 0) , xs) · ((0, y) , yt)
= ((x, y) , z + xs+ yt+ xy (d− c)) .

As

ϕ
(

((1, 1) , 1)
2
)

= ϕ ((2, 2) , 2) = ((2, 2) , 2 (1 + s+ t) + 4 (d− c)) ,

and

(ϕ ((1, 1) , 1))2 = ((1, 1) , 1 + s+ t+ d− c)2 = ((2, 2) , 2 (1 + s+ t) + 2 (d− c)) ,

it follows that d = c, a contradiction, whence the proof is complete. �

Returning to our original problem of understanding all ordered groups of dimen-
sion 3, we actually know that as groups all the Ec for c 6= 0 are isomorphic. (Recall
that we already know that for any order preserving action—as indeed the trivial
one is—the lexicographic order makes any extension an ordered group.)

Proposition 7.10. Let (U, i, π) be a representative of a non-zero class in
Ext

(

R
2,R

)

, the group of extensions of R2 by R, with R a definable R
2-module under

the trivial action. Then the group U is definably isomorphic to GHeis.

Proof. As we observed earlier, H2
(

R
2,R

)

≃ (R,+) carries the structure of an R-
vector space. Since the groups Ec above form a family of nonisomorphic extensions
indexed by c, it follows that all the possible extensions are equivalent to Ec for
some c ∈ R.

To prove the proposition, we thus need only show that every Ec is (definably)
isomorphic to either GHeis or to the abelian group R×R×R. Since E0 is isomorphic
to R× R× R, we now fix c 6= 0. Let σ : GHeis → Ec be given by

(x, y, z) 7→ ((x, y) , 2cz) .

It is evident that σ is an isomorphism, completing the proof. �

Combining the results above we have

Theorem 7.11. Let (R,+) be a definable
(

R
2,+

)

-module with the trivial action on

R. Then the definable extensions of R2 by R are (definably) isomorphic to either
R

3 or GHeis.
In particular, let G be an ordered decomposable group of dimension 3 and N be

its (unique) convex o-minimal normal subgroup such that H := G/N is isomorphic
to R×R and the natural action of H on N is the trivial action. Then G is (defin-
ably) isomorphic (as a group) to either R

3 or GHeis, both ordered lexicographically
according to the decomposition above.

Proof. All that requires proof is the assertion that all Ec with c 6= 0 as definable
ordered groups are isomorphic; indeed, if the underlying group is (R3,+), the de-
finable ordered group isomorphism is trivially given by the isomorphisms of the
convex subgroups.
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Any definable order that makes GHeis into an ordered group must have the sub-
group consisting of all matrices





1 0 z
0 1 0
0 0 1





with z ∈ R as its o-minimal convex subgroup N , and the quotient group GHeis/N ≡
(R2,+) then can be ordered in any way—all orders give rise to definable isomorphic
ordered groups. Thus, after applying a definable ordered group isomorphism, we
may assume that the ordered group GHeis is given by all real matrices





1 x z
0 1 y
0 0 1





ordered lexicographically with the variables in the order x, y, z.
Similarly, every ordered group

Ec := {((g1, g2),m1) | m1, g1, g2 ∈ R}
that comes from an extension must have Nc := {((0, 0),m1) | m1 ∈ R} as its convex
o-minimal normal subgroup. Moreover, all orderings of Ec/Nc give rise to definably
isomorphic ordered groups. We thus can assume that the order on Ec is given by
the lexicographic order given by the variables g1, g2,m1 in that order. It now is
evident that the map σ defined in the proof of Proposition 7.10 is an isomorphism of
definable groups. As we see in Section 8.3, the definable ordered group isomorphism
type varies according to whether c is positive or negative. �

7.2. H := R× R and the action of H on R is nontrivial.

We begin with an observation. Suppose that G and G′ are ordered groups with o-
minimal convex normal subgroup N , respectively N ′, such that the quotient groups
H := G/N and H ′ := G′/N ′ are isomorphic to R

2 and the actions γ : H → Aut(N)
and γ′ : H ′ → N ′ are nontrivial. Fact 5.2 implies that there is an isomorphism
of modules between (H,N, γ) and (H ′, N ′, γ′). Since any two orders on H (and
H ′) give rise to isomorphic ordered groups, we can assume that the isomorphism
respects the order between the triples.

We now prove

Theorem 7.12. Let ((R,+) , γ) be a definable
(

R
2,+

)

-module with nontrivial ac-

tion γ. Then H2
(

R
2,R, γ

)

= {0}.

Proof. By Fact 5.2, the action ϕ (x, y) = ex is definably equivalent to every non-
trivial action γ of R2 on R, hence H2

(

R
2,R, γ

)

≃ H2
(

R
2,R, ϕ

)

. It thus suffices to

calculate H2
(

R
2,R, ϕ

)

.

Let K = {(0, y) |y ∈ R} E
(

R
2,+

)

. Observe that ϕ makes (R,+) into a K-
module under the trivial action. An application of Lemma 7.1(4) yields that

H2(K,R) = {0}, and hence (H2(K,R))R
2/K = {0}. By direct calculation, one can

see that Hi(K,R) is an R
2/K module under a nontrivial action and Lemma 7.1(2)

implies thatH1(K,R) ≃ R. Since R2/K is isomorphic to R, we have by Lemma 7.1(3)
that H1(R2/K,H1(K,R)) = {0}. As K acts trivially on R, we have that R

K = R
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and thus H2(R2/K,RK) = {0}, again by Lemma 7.1(4). Putting together all of
the above, an application of Corollary6.2(1) gives H2(R2,R, ϕ) = {0}. �

The following now is an immediate consequence of Theorem 7.12 and the dis-
cussion preceding it.

Theorem 7.13. Let ((R,+) , γ) and ((R,+) , γ′) be two definable
(

R
2,+

)

-modules
with nontrivial actions γ and γ′, respectively. Then any two definable groups G and
G′ that are extensions of R2 by R under γ, respectively γ′, are definably isomorphic
as groups.

In particular, all decomposable three-dimensional ordered groups definable in
R such that the quotient H of G by the unique convex o-minimal subgroup is
isomorphic to R × R and the action is nontrivial, are definably isomorphic (as
groups) to R⋊γ R

2 where γ (x, y) = ex (this is an order preserving action). In view
of this, we shall abuse notation and denote by (R ⋊ R)×R the group given by the
action γ (x) = ex.

7.3. H := R⋊ R and the action of H on R is trivial.

We here assume that we have a group that is a definable extension of R⋊ R by
R with the trivial action.

As in the preceding cases, we first must compute the relevant cohomology groups.

Lemma 7.14. Let (R,+) be a definable (R⋊ R, ·)-module with the trivial action
then H1 (R ⋊ R,R) ≃ (R,+) and H2 (R⋊ R,R) = {0}.

Proof. Let K := {(x, 0) |x ∈ R} E R ⋊ R. Routine calculations (see [1]) show
that H0 (K,R) is an R ⋊ R/K-module with the trivial action and that R ⋊ R/K
acts nontrivially on H1 (K,R). The lemma then follows by applying Fact 6.1,
Lemma 7.1, and Corollary 6.2. Details are omitted and left to the interested reader.

�

With Lemma 7.14 in hand, we have

Theorem 7.15. Let (R,+) be a definable (R⋊ R, ·)-module with trivial action.
Then the cartesian product (R× (R⋊ R)) is the only group which is an extension
of (R ⋊ R, ·) by (R,+).

Modulo isomorphism, all such ordered groups are definably isomorphic to the
ordered group (R× (R⋊ R)) with the lexicographic order given first by the last co-
ordinate, second by the second coordinate and last by the first coordinate.

Proof. Only the final claim about the ordered groups needs to be checked. We
know that any definable ordered group G with o-minimal convex normal subgroup
N and H = G/N is ordered lexicographically first by the order in H and lastly by
the order in N . As we already have proved that any ordered groups isomorphic as
groups to N ≃ (R,+) or H ≃ (R⋊R, ·) are isomorphic as definable ordered groups,
the assertion is evident. �
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7.4. H := R⋊ R and the action of H on R is nontrivial.

The analysis in this case is far more delicate than in the preceding ones. We first
compute the isomorphism classes given by definable actions of modules.

Lemma 7.16. Let (R,+) be a definable R ⋊ R-module with nontrivial action γ.
Then γ ((x, y)) (a) = ecya, for some c 6= 0.

Proof. Let (R, γ1) and (R, γ2) be the definable (R,+)-modules where γ1 (x) :=
γ (x, 0) and γ2 (y) := γ (0, y) for all x, y ∈ R. By Fact 5.1 for i = 1, 2 we have that
γi (x) = ecix for some ci ∈ R . Thus,

γ ((x, y)) = γ ((x, 0) · (0, y)) = γ1 (x) γ2 (y) = ec1x+c2y

and
γ ((1, 1) · (1, 1)) = γ ((1 + e, 2)) = (γ (1, 0))1+e (γ (0, 1))2 .

As (γ[(1, 1)]2 = [γ(1, 0)]2[γ(0, 1)]2 we thus have γ (1, 0) = 1. Since γ is nontrivial
γ (0, 1) 6= 1, hence γ ((x, y)) (a) = ecya for some non-zero real constant c. �

The analysis now divides according to whether or not c = 1
Applying Lemma 7.1 and Corollary 6.2 yields

Lemma 7.17. Let (R,+) be a definable (R⋊ R, ·)-module with nontrivial action
γ = ecy with c 6= 1. Then H1 (R ⋊ R,R, γ) = {0} and H2 (R⋊ R,R, γ) = {0}.

Hence if c 6= 1 the only group extensions are the semidirect products.
We thus turn to the case c = 1. Similar computations yield H1 (R⋊ R,R, γ) ≃ R

and H2 (R ⋊ R,R, γ) � R. We prove that if c = 1 then H2 (R⋊ R,R, γ) ≃ (R,+),
by finding a nontrivial extension.

Definition 7.18. For k ∈ R \ {0}, let Tk denote the group defined on the set
R× (R× R) whose product is given by

(x1, (y1, z1)) ·k (x2, (y2, z2)) = (x1 + x2e
z1 + ky2z1e

z1 , (y1 + y2e
z1 , z1 + z2)) .

Easy calculations show that Tk indeed is a group. We also have

Fact 7.19. Let i (x) = (x, (0, 0)), π (x, (y, z)) = (y, z), and k ∈ R \ {0}. Then

0 → R
i→ Tk

π→ R ⋊ R → 0 is a definable extension of R ⋊ R by R with action
γ ((x, y)) (a) = eya.

Proposition 7.20. Let (R,+) be a definable (R ⋊ R, ·)-module with action
γ ((x, y)) (a) = eya. Then H2 (R⋊ R,R, γ) ≃ (R,+).

Proof. We already have that H2 (R ⋊ R,R, γ) � (R,+) and thus is either {0} or
R. But by Fact 7.19, there is a nontrivial extension so H2 (R ⋊ R,R, γ) must be
isomorphic to R. �

Furthermore, as in Proposition 7.9 one can show that the family of nontrivial
extensions is precisely the family of groups Tk.

Fact 7.21. Let c, d ∈ R \ {0}. If c 6= d then the extensions (Tc, π) and (Td, π) are
not definably equivalent.

As we show below, the groups Tk as k ranges over R\{0} are definably isomorphic.
We thus adopt notation that appears in the literature by renaming T1 as G3.
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Lemma 7.22. Let (U, i, π) be a nontrivial extension of R⋊R by (R, γ) with action
γ ((y, z)) (a) = eza. Then the group U is definably isomorphic to G3.

Proof. Since we have that H2 (R⋊ R,R, γ) ≃ (R,+) and also that the groups Tk
where k ∈ R \ {0} form a family of nonisomorphic extensions, it follows that all the
possible groups are isomorphic to Tk for some k. To prove the lemma, we only need
to show that every Tk is isomorphic to either G3 or to the group R ⋊γ (R ⋊ R).

Note first that if k = 0 we immediately have an isomorphism with R⋊γ (R ⋊ R)).
Now let k 6= 0 and let f denote the cocycle f ((y1, z1) , (y2, z2)) = y2z1e

z1 of the
extension G3. Then Tk is a group associated with the cocycle kf and its product
is given by

(x1, (y1, z1))·k(x2, (y2, z2)) = (x1 + x2e
z1 + kf ((y1, z1) , (y2, z2)) , (y1 + y2e

z1 , z1 + z2)) .

Define σ : Tk → G3 by

(x, (y, z)) 7→
(

1

k
x, (y, z)

)

.

We prove that σ is an isomorphism. Indeed,

σ (x1, (y1, z1)) ·k (x2, (y2, z2))

= σ (x1 + x2e
z1 + kf ((y1, z1) , (y2, z2)) , (y1 + y2e

z1 , z1 + z2))

=

(

1

k
(x1 + x2e

z1) + f ((y1, z1) , (y2, z2)) , (y1 + y2e
z1 , z1 + z2)

)

and

σ (x1, (y1, z1)) ·1 σ (x2, (y2, z2))

=

(

1

k
x1, (y1, z1)

)

·1
(

1

k
x2, (y2, z2)

)

=

(

1

k
x1 +

1

k
x2e

z1 + f ((y1, z1) , (y2, z2)) , (y1 + y2ez1, z1 + z2)

)

as required. �

We now have

Theorem 7.23. Let (R,+) be a definable (R ⋊ R, ·)-module with action
γ ((x, y)) (a) = eya. Then the groups which are definable extensions of R⋊ R by R

are isomorphic to either G3 or R ⋊γ (R⋊ R).

Unlike the previous cases the situation here is more subtle and thus additional
work is required to determine the possible isomorphism classes—as groups—of (or-
derable) decomposable definable groups that arise. We begin with some easy ob-
servations.

Proposition 7.24. Let γ be the nontrivial action of R ⋊ R on (R,+) given by
γ ((x, y)) (a) = ecya, where c 6= 0. Then R ⋊γ (R⋊ R) is definably isomorphic to
the group R

2
⋊τc R where

τc (z) (x, y) :=

[

ecz 0
0 ez

](

x
y

)

.

Furthermore, the action is order-preserving if and only if c > 0.

Proof. The mapping (x, (y, z)) 7→ ((x, y) , z) is an isomorphism. �
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We now determine which of the groups R2
⋊τc R are definably isomorphic, where

the action τc is as displayed above.

Proposition 7.25. Let c ∈ R \ {0}. Then R
2
⋊τc R and R

2
⋊τ1/c R are definably

isomorphic.

Proof. Let ϕ : R2
⋊τcR → R

2
⋊τ1/cR be the definable bijection given by ((x, y), z)

ϕ7→
((y, x), cz). As

ϕ (((x, y) , z) · ((x′, y′) , z′)) = ϕ ((x+ eczx′, y + ezy′) , z + z′)

= ((y + ezy′, x+ eczx′) , c (z + z′))

= ((y, x) , cz) · ((y′, x′) , cz′)
= ϕ ((x, y) , z) · ϕ ((x′, y′) , z′) .

we have that ϕ is an isomorphism. �

The next observation follows easily by direct calculation.

Proposition 7.26. Let d ∈ R\{0} and ((x, y) , z) ∈ R
2
⋊τdR be fixed but arbitrary.

Then

(1) If z 6= 0, the function hz : R → R
2
⋊τd R defined by

w 7→
(((

edzw − 1

edz − 1

)

x,

(

ezw − 1

ez − 1

)

y

)

, wz

)

is a definable homomorphism.
(2) If z = 0, the function h0 : R → R

2
⋊τd R given by

w 7→ ((wx,wy) , 0)

is a definable homomorphism.

With the way now paved we prove

Lemma 7.27. Let c, d ∈ R \ {0} with c /∈ {d, 1/d}. Then R
2
⋊τc R and R

2
⋊τd R

are not definably isomorphic.

Proof. For a contradiction suppose there is a definable isomorphism ϕ : R2
⋊τc R →

R
2
⋊τd R. For i ∈ {1, 2, 3} let θi : R → R

2
⋊τd R given by θ1 (x) = ϕ ((x, 0) , 0),

θ2 (y) = ϕ ((0, y) , 0) and, θ3 (z) = ϕ ((0, 0) , z). It is evident that each θi is a
definable homomorphism and ϕ ((x, y) , z) = θ1 (x) θ2 (y) θ3 (z).

For i ∈ {1, 2, 3} put ((xi, yi) , zi) := θi (1) and define the functions hi,zi : R →
R

2
⋊τd R by

hi,zi (x) =







(((

edzix−1
edzi−1

)

xi,
(

ezix−1
ezi−1

)

yi

)

, xzi

)

if zi 6= 0

((xxi, xyi) , 0) if zi = 0.

These are definable homomorphisms by Proposition 7.26. Since hi,zi (1) = θi (1)
for all zi and i ∈ {1, 2, 3}, Fact 7.2 implies that hi,zi = θi for all i ∈ {1, 2, 3}.

We assert that z1 = z2 = 0. Indeed, suppose z1 6= 0. Let π3 : R2
⋊τd R → R

denote the projection homomorphism onto the third coordinate. Then

π3

(

ϕ
(

((1, 0) , 1)
2
))

= (1 + ec) z1 + 2z3

and
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π3

(

(ϕ ((1, 0) , 1))
2
)

= 2z1 + 2z3,

from which it follows that z1 = 0, contradiction. A similar argument, replacing
((1, 0) , 1) by ((0, 1) , 1), shows that z2 = 0. Hence θ1 (x) = ((xx1, xy1) , 0) and
θ2 (x) = ((xx2, xy2) , 0).

We next show that z3 /∈ {0, 1}. Direct computation yields that

ϕ
(

((1, 0) , 1)
2
)

=
((

(1 + ec)x1 +
(

edz3 + 1
)

x3, (1 + ec) y1 + (1 + ez3) y3
)

, 2z3
)

,

and

(ϕ ((1, 0) , 1))2 =
((

(x1 + x3)
(

edz3 + 1
)

, (y1 + y3) (1 + ez3)
)

, 2z3
)

,

from which we obtain

(1 + ec) x1 =
(

edz3 + 1
)

x1(1)

and

(1 + ec) y1 = (ez3 + 1) y1.(2)

If z3 = 0, these force x1 = y1 = 0, which, together with z1 = 0, gives that
ϕ ((x, y) , z) = θ2 (y) θ3 (z). As this implies that ϕ is not injective, we must have
that z3 6= 0, and, as a consequence that

θ3 (x) =

(((

edz3x − 1

edz3 − 1

)

x3,

(

ez3x − 1

ez3 − 1

)

y3

)

, xz3

)

.

We also have

ϕ
(

((0, 1) , 1)
2
)

=
((

(1 + e)x2 +
(

edz3 + 1
)

x3, (1 + e) y2 + (ez3 + 1) y3
)

, 2z3
)

and

(ϕ ((0, 1) , 1))
2
=

((

(x2 + x3)
(

edz3 + 1
)

, (y2 + y3) (1 + ez3)
)

, 2z3
)

which in turn yield

(1 + e)x2 =
(

edz3 + 1
)

x2(3)

and

(1 + e) y2 = (ez3 + 1) y2.(4)

Suppose now that z3 = 1. Equation (1) implies that x1 = 0, and Equation (2) that
c = 1 or y1 = 0. With y1 = 0 we again find that ϕ ((x, y) , z) = θ2 (y) θ3 (z) and thus
we are left with c = 1. Equation (3) implies that d = 1 or x2 = 0, and as we have
assumed that c 6= d we have x2 = 0. Combining z3 = 1 with x1 = x2 = z1 = z2 = 0
yields

ϕ ((x, y) , z) =

(((

edz − 1

ed − 1

)

x3, xy1 + yy2 +

(

ez − 1

e− 1

)

y3

)

, zz3

)

.

From this we have ϕ ((y2,−y1) , 0) = 0, which forces y1 = y2 = 0. Then
ϕ ((x, y) , z) = θ3 (z), which is impossible. Thus z3 6= 1.

By Equation (4), y2 = 0 and thus x2 6= 0, as otherwise ϕ cannot be injective.
Equation (3) with x2 6= 0 implies that 1 = dz3 and hence by (1) that c = 1 or
x1 = 0. With c = 1 Equation (2) gives y1 = 0 and hence

ϕ ((x, y) , z) =

((

xx1 + yx2 +

(

edz3z − 1

edz3 − 1

)

x3,

(

ez3z − 1

ez3 − 1

)

y3

)

, zz3

)

.
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Then ϕ ((−x2, x1) , 0) = ((0, 0) , 0) and as x2 6= 0 again we contradict that ϕ is
injective. So we are left with the possibility that c 6= 1 and x1 = 0. For ϕ to be
injective we must have y1 6= 0. Invoking Equation (2) we obtain z3 = c. Combined
with 1 = dz3 this yields c = 1/d, contradicting the hypothesis that c 6= d, 1/d. So
ϕ cannot exist and the proof is complete. �

We now can state and prove the main result in the case that H = R⋊R and the
action of H on R is nontrivial.

Theorem 7.28. Let G be an ordered group with o-minimal convex subgroup N
such that H := G/N ≡ (R⋊R) and the action of H on N is nontrivial. Then G is
isomorphic to either G3 or R

2
⋊τc R for some c ∈ [−1, 1], where

τc (z) (x, y) :=

[

ecz 0
0 ez

](

x
y

)

.

There is one definable isomorphism class of ordered groups for each c ∈ [−1, 1] and
one for G3.

Proof. Let N be the o-minimal subgroup of G and let N∗ be the pullback of the
o-minimal subgroup NH of H under the quotient map from G to H Thus N∗ is
a 2-dimensional ordered convex subgroup of G. Lemma 7.16 implies that N∗ is
isomorphic to R

2 and by construction it is ordered lexicographically by N2/N first
and then by N .

It also shows that, after composing by an (ordered group) automorphism of H
so that the action of NH on H/NH is given by the exponential function, the action
of G/N∗ on N∗ is given by

τc (z) (x, y) :=

[

ecz 0
0 ez

](

x
y

)

for some c ∈ [−1, 1].
From Propositions 7.24, 7.25, and 7.27 it follows that as groups there is one

isomorphism class for every c ∈ [−1, 1].
To complete the proof of the theorem, we will show that G3 and R

2
⋊τc R are

not definably isomorphic. For a contradiction, suppose that ϕ : R2
⋊τc R → G3

were a definable isomorphism of groups.
Since the only proper nontrivial normal subgroups of R

2
⋊τc R and G3 are,

respectively, R2 × {0} and R× (R× {0}), the restriction of ϕ to R
2 × {0} must be

an isomorphism between these normal subgroups. Then, for all x, y ∈ R we have
that

ϕ ((x, y) , 0) = ((ax+ by, ky) , 0)

for some a, b, k ∈ R such that ak 6= 0.
The restriction of ϕ to {(0, 0)}×R also is a definable group isomorphism. Hence

there are definable θ1, θ2, and θ3 such that ϕ ((0, 0) , z) = (θ1 (z) , θ2 (z) , θ3 (z)) for
all z ∈ R. Since

(θ1 (z + z′) , (θ2 (z + z′)) , θ3 (z + z′))

= (θ1 (z) , (θ2 (z)) , θ3 (z)) · (θ1 (z′) , (θ2 (z′)) , θ3 (z′))
=

(

θ1 (z) + eθ3(z)θ1 (z
′) + θ3 (z) θ2 (z

′) eθ3(z),
(

θ2 (z) + θ2 (z
′) eθ3(z), θ3 (z) + θ3 (z

′)
))
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we immediately see that there is some k3 ∈ R for which θ3 (z) = k3z for all z ∈ R.
We next observe that θ2 is a ‘crossed homomorphism’, and as H1

(

R,R, ek3z
)

= {0},
an easy calculation yields that there is some k2 ∈ R such that θ2 (z) = k2

(

ek3z − 1
)

for all z ∈ R.
In R

2
⋊τc R we have ((x, y) , 0) · ((0, 0) , z) = ((x, y) , z) and so

ϕ (((x, y) , z)) = ϕ (((x, y) , 0)) · ϕ (((0, 0) , z))

= ((ax+ by, ky) , 0) ·
((

θ1 (z) , k2
(

ek3z − 1
))

, k3z
)

=
((

ax+ by + θ1 (z) , ky + k2
(

ek3z − 1
))

, k3z
)

.

Thus

ϕ (((x, y) , z)) · ϕ (((x′, y′) , z′))

=
(

ax+ by + θ1 (z) + ek3z (ax′ + by′ + θ1 (z
′)) + k3ze

k3z
(

ky′ + k2

(

ek3z
′ − 1

))

,
(

ky + k2
(

ek3z − 1
)

+ ek3z
(

ky′ + k2

(

ek3z
′ − 1

))

, k3 (z + z′)
))

and

ϕ (((x, y) , z) · ((x′, y′) , z′)) = (a (x+ x′ecz) + b (y + y′ez) + θ1 (z + z′) ,
(

k (y + y′ez) + k2

(

ek3(z+z′) − 1
)

, k3 (z + z′)
))

.

Equating the second components yields ky′ek3z = ky′ez; hence as ak 6= 0 we have
k3 = 1. Equating the first components and putting z′ = y′ = 0 gives ax′ecz = ax′ecz

and thus c = 1. Then, if c 6= 1 such isomorphism can not exist. Next, if we put
z′ = 0 and from the first components we obtain zky′ez = 0 for all z, y′ ∈ R, which
forces k = 0, a contradiction. The theorem now follows. �

8. decomposable ordered groups modulo ordered group isomorphism

In the preceding sections we have analyzed decomposable ordered groups in
dimensions 2 and 3 modulo definable group isomorphism. As noted in the intro-
duction, even in dimension 2—see 8.1 below—this is not the same as identifying
the classes of decomposable ordered groups modulo definable ordered group iso-
morphism. We here determine the isomorphism classes taking into account the
ordered group structure. In dimension 3, the analysis follows the case distinctions
of Section 7.

Observe that if G is a definable ordered group and N a normal o-minimal convex
subgroup, then G is an extension of G/N by N and the order is given lexicograph-
ically. This implies in particular that if two extensions are isomorphic, then they
are isomorphic as ordered groups.

8.1. Dimension 2. In dimension two there are three definable ordered groups
modulo order group isomorphism. These are R ⋉γ R with γ = ex, and γ = e−x,
and the direct product (γ = 1), as we now show.

Given any other R ⋉γ R where γ = ecx, then the group isomorphism (x, y) 7→
(|c|x, y) is a definable ordered group isomorphism with one of the three groups
above.
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It remains to prove that the groups R ⋉γ R and R ⋉γ′ R, where γ = ex and
γ = e−x, although isomorphic as definable groups are not isomorphic as ordered
groups. Indeed, for positive g1, g2 we have g1g2g

−1
1 ≥ g2 in the first case, whereas

in the second case g1g2g
−1
1 ≤ g2, and since the groups are non abelian they are not

isomorphic as ordered groups.

8.2. Extensions of R × R by R with trivial action. All extensions of R × R

by R with trivial action are isomorphic as definable extensions—hence as definable
ordered groups—to either R× R× R or to one of the groups Ec for c ∈ R \ {0} as
defined in 7.1. The map (x, y, z) 7→ (|c|x, y, z) is a definable order preserving group
isomorphism from Ec to either E1 or E−1, depending on whether c is positive or
negative. The following assertion thus completes the classification of all ordered
group isomorphism types that arise in this case.

Claim 8.1. E−1 and E1 are not isomorphic as ordered groups.

Proof. Let G be either E1 or E−1 and let g := (a, b, c) be any element with a > 0.
(Note that this can be done without mentioning how the group is representated:
just take any representative of a positive class not equivalent to the identity inG/N∗

where N∗ is the unique convex subgroup of dimension 2.) Next let h := (0, k, l) be
any element with k > 0 (that is, any positive element with respect to the order on
G in the identity class of G/N∗). Easy computations show that for any such g and
h, if G = E1 then

ghg−1h−1 = (0, 0, 2ak) > (0, 0, 0),

and if G = E−1, then

ghg−1h−1 = (0, 0,−2ak) < (0, 0, 0).

�

Hence in this case, we have three definable ordered groups modulo definable
ordered group isomorphism, namely R

3, E1, and E−1.

8.3. Extensions of R×R by R with nontrivial action. From the analysis in 7.2
the situation is as follows. Put G := {(x, y, z) | x, y, z ∈ R} and N := {(0, 0, z) | z ∈
R}. we have that G is a lexicographically ordered group—ordered first by x, second
by y, and third by z—with an action of G/N on the convex o-minimal subgroup N
given by γc,d(x, y) = ecx+dy. For ease of notation, throughout this subsection we
refer to this group as Gc,d.

The following hold via easy calculations:

a. If d > 0 then the map (x, y, z) 7→ (x, cx+dy, z) is a definable ordered group
isomorphism from Gc,d onto G0,1;

b. If d < 0 then the map (x, y, z) 7→ (x,−cx − dy, z) is a definable ordered
group isomorphism from Gc,d onto G0,−1;

c. If d = 0 and c > 0 then the map (x, y, z) 7→ (cx, y, z) is a definable ordered
group isomorphism from Gc,d onto G1,0;

d. If d = 0 and c < 0 then the map (x, y, z) 7→ (|c|x, y, z) is a definable ordered
group isomorphism from Gc,d onto G−1,0.

Thus every extension of R×R by R with nontrivial action and lexicographically
ordered is definably isomorphic as an ordered group to one of G0,1, G0,−1, G1,0, or
G−1,0. To complete the analysis in this case, we assert:
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Claim 8.2. The ordered groups G0,1, G0,−1, G1,0, and G−1,0 are nonisomorphic
(as ordered groups).

Proof. In G1,0 and G−1,0 there is an abelian convex two dimensional subgroup,
which is not the case for G0,1 and G0,−1.

To show that G1,0 and G−1,0 are not isomorphic as ordered groups, the same
analysis as in the two dimensional case applies. In G1,0 let h be an element in
the convex o-minimal subgroup and let g be a positive element. Then ghg−1 ≥ h.
If we take any such two elements h and g in G−1,0 then ghg−1 ≥ h. A similar
argument shows that the ordered groups G0,1 and G0,−1 are not isomorphic as
ordered groups. �

Hence G0,1, G0,−1, G1,0, and G−1,0 are, modulo ordered group isomorphism, the
only ordered groups that decompose as an extension of R×R by R with nontrivial
action.

8.4. Extensions of R⋉c R by R with trivial action. From the analysis in 7.3,
we know that every such group extension (ordered lexicographically) is isomorphic
to R ⋉c R × R. The only remaining issue in this case is precisely the same as
in the two dimensional case: there are two ordered groups modulo definable order
isomorphism, depending on whether the action by a positive element is “expanding”
(c = 1) or “contracting” (c = −1). This completes the analysis in this case.

For extensions of R⋉c R by R with nontrivial action (see 7.4), the analysis now
divides according to whether or not the extension is trivial.

8.5. Trivial extensions of R ⋉c R by R with nontrivial action. From the
results in 7.4, we can represent such a group as consisting of all elements (x, y, z) ∈
R

3 ordered lexicographically by x, y and z in this order and such that for all
g = (x, y, z) and h = (0, l,m) we have ghg−1 = (0, ecxl, edxm) for constants c
and d. For ease of notation in this subsection we use Kc,d to refer to this ordered
group. We then let N := {(0, 0, z) | z ∈ R} and N ′ := {(0, y, z) | y, z ∈ R} denote,
respectively, the one and two dimensional convex normal subgroups of Kc,d.

An easy calculation shows that (x, y, z) 7→ ((|c|)x, y, z) is a definable order pre-
serving group isomorphism from Kc,d to either K1,d/c or K−1,−d/c depending on
whether c is positive or negative.

As in the preceding case one can show that for all f and f ′ the ordered groups
K1,f and K−1,f ′ are not isomorphic. Indeed, in K1,f the action of a positive class
of G/N ′ on a positive class of N ′/N is a map that is greater than the identity map
on every element of the domain, whereas for K−1,f ′ the corresponding map is less
than the identity map for all elements of the domain. By Proposition 7.25 we also
know that if f ′ 6= 1/f then K1,f and K1,f ′ are not even isomorphic as groups. Thus
it remains to determine whether or not for a given value f the groups K1,f and
K1,1/f are isomorphic as definable ordered groups, and likewise for each pair K−1,f

and K−1,1/f . We have

Claim 8.3. For f 6= 1 the groups K1,f and K1,1/f are not isomorphic as ordered
groups, and likewise for K−1,f and K−1,1/f .

Proof. An ordered group isomorphism must in particular induce isomorphisms be-
tween the two convex normal subgroups of dimension 2, which are isomorphic to
R × R, and also between the quotient of the groups by these subgroups, isomor-
phisms which must preserve the group action. Let γ be the action in K1,f of the
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quotient Rx on the dimension two convex normal subgroup Ry × Rz . Then for
any nonzero element x ∈ Rx the action γ(x) is an isomorphism of the vector space
Ry × Rz that has Ry × {0} and {0} × Rz as its eigenspaces. The same holds for
K1,1/f .

A group isomorphism must map eigenspaces to eigenspaces, and in the ordered
group case the coordinates cannot be switched since the eigenspace {0}×Rz is the
normal convex o-minimal subgroup. Hence, a definable ordered group isomorphism
between K1,f and K1,1/f must be multiplication by a constant in each coordinate.
It then is easy to check that there is no constant k in the x variable that can send
the group action ex in the y-coordinate to itself and send the group action efx to
ex/f in the z-cooordinate. A similar argument shows that the groups K−1,f and
K−1,1/f with f 6= 1 are not isomorphic as ordered groups.

�

Thus, modulo definable ordered group isomorphism, the trivial extensions of
R⋉c R by R with nontrivial action are the groups K1,f and K−1,f for f ∈ R \ {0}.

We now have one last case.

8.6. G3. The only nontrivial extension of R⋉c R by R that arises comes equipped
with the action as described above in 8.5 with c = d. As there, the mapping
(x, y, z) 7→ (|c|x, y, z) provides an ordered group isomorphism that allows us to
assume that either c = d = 1 or c = d = −1. We will refer to the respective ordered
groups as T1 = G3 and T−1.

By the same argument given in the proof of Lemma 7.22, any nontrivial extension
of R⋉cR by R must be (definably) isomorphic as an ordered group to either G3 = T1
or to T−1. Moreover, it is evident that these groups are not isomorphic as ordered
groups since the action of the quotient of the group by its two dimensional normal
convex (abelian) subgroup on this subgroup is increasing in T1 and decreasing T−1.

9. Summary and relations with Real Lie Groups

Let R be an o-minimal expansion of an ordered field satisfying the hypotheses
(∗) and (∗∗), namely that all o-minimal groups are definably isomorphic and (as
stated above for expansions of the real field) that every abelian torsion free two
dimensional definable group is isomorphic to the direct product of its additive
group with itself.

We here recapitulate the results we have proved, which for concreteness, we state
assuming that R is an o-minimal expansion of the real field.

Summary 9.1. The supersolvable definable groups in R that are definably (topo-
logically) homeomorphic to R

3 are, modulo definable group isomorphism,
(

R
3,+

)

,

(GHeis, ·), ((R⋊ R)× R, ·), G3, and R
2
⋊τc R where τc (z) (x, y) = (xecz, yez), with

c 6= 0, is a nontrivial action of (R,+) on
(

R
2,+

)

.

For 2-dimensional ordered groups definable in R we have

Summary 9.2. Let G be a R-definable 2-dimensional ordered group. Then G is
isomorphic to R

2 := R× R, to R ⋊1 R, or R ⋊−1 R, each ordered with the reverse
lexicographical order (that is, the second coordinate ordered first).

Before stating our result for ordered groups of dimension 3 definable in R we
introduce some notation. For R

3 written as triples (x, y, z), by x >> y >> z we
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mean the lexicographic order with the x-coordinate first, then the y-coordinate, and
lastly the z-coordinate. Likewise, y >> x >> z is the lexicographic order with the
y-coordinate first, then the x-coordinate, and lastly the z-coordinate, and similarly
for the other permutations of the variables.

Summary 9.3. Let G be a R-definable ordered group of dimension 3. Then G is
definably isomorphic as an ordered group to exactly one of the following:

i.
(

R
3,+

)

with lexicographical order.
ii. With the notation from 8.2, either E1 or E−1, ordered lexicographically

(first the x-coordinate, then y, and then z). The groups represented in this
class are the nontrivial extensions of R2 by R with trivial action.

iii. ((R⋊ R)× R, ·). If the presentation is given by {(x, y, z) | x, y, z ∈ R
3},

then the order is lexicographic, with either y >> z >> x, z >> y >> x, or
y >> x >> z. The first two cases are from 8.3; the last from 8.4.

iv. R
2
⋊τ R, with universe {(x, y, z) | x, y, z ∈ R

3} and τ given by either
τ (z) (x, y) =

(

ezx, edy
)

or τ (z) (x, y) =
(

e−zx, edzy
)

for some d ∈ R \ 0,
ordered by z >> x >> y.

v. T1 or T−1 ,with the notation used in 8.6, ordered lexicographically.

We now turn to the real Lie group context. It is known that any compact Lie
group is isomorphic to a real algebraic subgroup of GL(n,R) (see, [6], e.g.). Such
a group thus is interpretable in an o-minimal structure (in fact, definable in the
real field) and is therefore analyzable by results in the o-minimal setting. It is also
not difficult to find examples of Lie groups—over either the complex or real field—
that are not definable in an o-minimal structure (e.g., the group of rigid—norm
preserving—automorphisms of the plane). However, our context rules out all of the
examples known to us: any real Lie group with an order compatible with the group
structure must be topologically homeomorphic to a cartesian product of R. We do
not know whether or not any ordered real Lie group, where the order is given by
smooth functions is definably isomorphic to one of the groups described above. In
fact, we do not know whether or not a Lie group with an order that is compatible
with the group structure is supersolvable.

We do know the following.

Corollary 9.4. Let G be a algebraic real Lie ordered group (in the sense that
the group operations and the order are definable in the real ordered field structure,
i.e., by polynomials and the natural order on R) of dimension 2 or 3. Then G is
isomorphic (as an ordered Lie group) to one of the groups described above in 9.2
and 9.3. Even more, the isomorphism is definable in RPfaff , and hence is given
by equations that are solutions to a Pfaffian system over the real field (Pfaffian
equations). In particular the isomorphism is analytic.

The same is true for any real Lie ordered group of dimension 2 or 3 for which
the group operation and the order are definable via Pfaffian equations.

Conversely, all of the groups described in 9.2 and 9.3 are definable by Pfaffian
equations. However, the groups T1 = G3 and T−1 are not algebraic, so these are
Lie groups which are orderable by continuous relations that are not algebraic.

We believe that something along the lines of Corollary 9.4 should be true for all
Lie ordered groups, since refuting this would require adding a Lie (ordered) group
structure that violates o-minimality of the real field, without having the universe
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be discrete (since an ordered Lie group must be topologically homeomorphic to R
n

for some n). While this seems unlikely, we do not know how to continue.
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