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 Annals of Mathematics, 116 (1982), 621-659

 Embedded minimal surfaces, exotic
 spheres, and manifolds with positive

 Ricci curvature

 By WILLIAM MEEKS III, LEON SIMON and SHING-TUNG YAU

 Let N be a three dimensional Riemannian manifold. Let E be a closed

 embedded surface in N. Then it is a question of basic interest to see whether one

 can deform : in its isotopy class to some "canonical" embedded surface. From

 the point of view of geometry, a natural "canonical" surface will be the extremal

 surface of some functional defined on the space of embedded surfaces. The

 simplest functional is the area functional. The extremal surface of the area

 functional is called the minimal surface. Such minimal surfaces were used

 extensively by Meeks-Yau [MY21 in studying group actions on three dimensional
 manifolds.

 In [MY2], the theory of minimal surfaces was used to simplify and strengthen

 the classical Dehn's lemma, loop theorem and the sphere theorem. In the setting

 there, one minimizes area among all immersed surfaces and proves that the

 extremal object is embedded. In this paper, we minimize area among all

 embedded surfaces isotopic to a fixed embedded surface. In the category of these

 surfaces, we prove a general existence theorem (Theorem 1). A particular

 consequence of this theorem is that for irreducible manifolds an embedded
 incompressible surface is isotopic to an embedded incompressible surface with

 minimal area. We also prove that there exists an embedded sphere of least area

 enclosing a fake cell, provided the complementary volume is not a standard ball,

 and provided there exists no embedded one-sided RP2.

 By making use of the last result, and a cutting and pasting argument, we are

 able to settle a well-known problem in the theory of three dimensional manifolds.

 We prove that the covering space of any irreducible orientable three dimensional

 manifold is irreducible. It is possible to exploit our existence theorem to study

 finite group actions on three dimensional manifolds as in [MY2].

 In the second part of the paper, we apply our existence theorem to study the

 topology of compact three dimensional manifolds with non-negative Ricci curva-
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 622 W. MEEKS III, L. SIMON, S. T. YAU

 ture. We classify these manifolds except in the case when the manifold is covered

 by an irreducible homotopy sphere. As a consequence, if one can prove the

 existence of a metric with positive Ricci curvature on any compact simply

 connected three dimensional manifold, then the Poincare conjecture is valid. It

 should be mentioned that our existence theorem was used by Schoen-Yau [SY2]

 to prove that the only complete non-compact three dimensional manifold with

 positive Ricci curvature is diffeomorphic to R3. In this paper, we also classify the

 topology of compact three dimensional manifolds whose boundary has non-nega-

 tive mean curvature with respect to the outward normal.

 In the above process, we study the topology of compact embedded

 orientable minimal surfaces in a three dimensional manifold diffeomorphic to

 s3#n11 S2 X S' which is equipped with a metric with non-negative scalar curva-
 ture. We find the condition for which two compact embedded orientable surfaces

 are conjugate to each other under a diffeomorphism of the ambient space. If the

 manifold is diffeomorphic to the three dimensional sphere, then the minimal

 surface is unique topologically. This generalizes a previous theorem of Lawson

 [LH] where the metric has positive Ricci curvature and a theorem of Meeks

 [MW2] where the metric has non-negative Ricci curvature.

 In the last section, we study complete manifolds (non-compact) with posi-

 tive Ricci curvature whose boundary has non-negative mean curvature with

 respect to the outward normal. We prove that the boundary is connected unless

 it is a Riemannian product or is a handlebody. As in the paper of Frankel [FT],

 this gives some information about the fundamental group of the boundary.
 Finally, we should mention that the regularity of the extremal embedded

 minimal surface in the main existence theorem depends on the theory of

 Almgren-Simon [AS], where they deal with minimal surfaces in R3. It should also

 be mentioned that very recently, Freedman-Hass-Scott were able to improve one

 aspect of our theorem and prove that if a compact incompressible minimal

 surface minimizes area in its homotopy class and if it is homotopic to an

 embedded surface, then it is embedded.

 1. Terminology and statement of main results

 B, will denote the closed 3-ball of radius p and center 0 in R3,

 B = B1 S2 = aB.

 D will denote the closed unit disc with center 0 in R2.

 N will denote a complete (not necessarily orientable) Riemannian 3-mani-

 fold. If : C A is in a smooth surface, we let I2 denote the area (two
 dimensional Hausdorff measure) of E.
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 EMBEDDED MINIMAL SURFACES 623

 N will always be supposed to have the following "homogeneous regularity"

 property for some po > 0:

 For each x0 E N there is an open geodesic ball Gp0(x0) with center x0 and
 radius po such that the exponential map expxo provides a diffeomorphism 9p of BPo

 onto Gpo(X0), satisfying

 (1.1)~ 1 ldyqg 1, lid T 1 1c2, y CBP, 30 z c po(xo).

 We also require that there be a constant [t independent of x0 such that

 (1.2) supB | a k < C/P0, SupBpa kaka -1

 for i, I, k, 1 = 1, 2, 3, where gig dx2 dxi is the metric relative to normal coordinates

 for GPO(xO).

 Of course it is trivial that such a po and such a [t exist in case N is compact.
 By using comparison theorems in differential geometry, we can prove that a

 manifold is homogeneous regular if and only if it is a complete manifold whose

 injectivity radius is bounded from below and whose sectional curvature is

 bounded.

 C will denote the collection of all connected compact (not necessarily

 orientable) smooth 2-dimensional surfaces-without-boundary embedded in N. C1

 will denote the collection of compact embedded surfaces l such that each

 component of l is an element of C.

 Given l E QJ, we let J(2) denote the isotopy class of l; that is J(2) is the

 collection of all l E C1 such that l is isotopic to Y via a smooth isotopy zp:

 [0, 1] X N N, where qp ='N and each q9t is a diffeomorphism of N onto N.
 Here pt is defined by qgt(x) = (t, x), (t, x) E [0, 1] X N; we shall often write
 m {=Ptli't?. In case N is non-compact, we also require that there be a fixed
 compact K C N such that pt IN-K = 'N-K for each t E [0, 1].

 Now suppose 2 E C is given. If infiE.) I =J# 0, then we may select a
 sequence {2k} C J(2) with lim I k I =inf E.) | I. We call such a sequence
 a minimizing sequence for J(2). More generally, {2kl C 1 is called a mini-

 mizing sequence if I Ek 1I infE (k) I I2 +Ek with ek -? 0 as k -- o and if
 lim supk I 4 Ek I + genus(Ek)) < 00.

 By a standard compactness theorem for Borel measures (applied to the

 measures Ilk given by yk(f) = fjkf, f e Co(N)), we know that there is a
 subsequence {2k } C {fk} and a Borel measure tL with

 (1.3) IL(f) lim f, feCO(N).
 k/4 00
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 624 W. MEEKS III, L. SIMON, S. T. YAU

 Our main existence theorem is then given as follows:

 THEOREM 1. Suppose N is compact, and {ok} C 2 is a minimizing se-

 quence; let {fk'}, [t be as in (1.3) above, and suppose lm I 2V > 0.
 Then there are positive integers R, n,..., nR and pairwise disjoint minimal

 surfaces E(), . . ,2) E C such that

 2 k'> n (') + n2 (2) + . +n 2(R)

 (in the sense that ,u(f) = 21njlffJ fE C(N), tt as in (1.3)).
 Furthermore, if g= genus(V:')), then

 (1.4) 1n7(g - 1) + 2 n~gj ? genus(Y-k,)
 iclt i C-

 for all sufficiently large k', where Qt { j: E) is one-sided in N) and ?
 { i: E(i) is two-sided in N). (Notice that g 1 for all j E Qt; hence all terms in
 (1.4) are non-negative.)

 If each 2k' is two-sided in N. then each E) satisfies the stability

 (1.5) f( 1(i A 12 + Ric(v, v)) - I 12) ? 0, t' E (:

 where v is any unit normal for E) (V(i) need not necessarily be two-sided, so
 that here v is not assumed to be continuous.) In any case, even when 2k' is

 one-sided, (1.5) holds for any E) which is two-sided in N.
 In case N merely satisfies the homogeneous regularity condition described

 above, the hypothesis lim I I> 0 must be replaced by the hypothesis that
 lim inf I 2 k' n K I> 0 for some compact K C N; then the above conclusions
 continue to hold. In fact there are currents Sk' which tend to infinity and which

 can be written as finite sums of embedded closed surfaces with uniformly

 bounded diameter and with area bounded from below (by a fixed positive

 constant) so that

 2k' - Sk' n12() + n22(2) +* +nk 2(k)
 and

 lim I Sk/ | = lim I Y-k'1 |-(nl I 7:(1) I + ***+nk I 2(k) 1).

 Furthermore (1.4) and (1.5) hold, where in (1.4) we can add the corresponding

 sum associated to the genus of the surfaces in Sk,.

 In particular, if N satisfies the additional condition that for each c > 0

 there exists a compact set of N so that a geodesic ball of radius c in the
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 EMBEDDED MINIMAL SURFACES 625

 complement of this compact set is a subset of some open domain diffeomorphic

 to the ball, then we may take Sk/ = 0.

 (1.6) Remarks. 1. We shall give a more precise statement concerning the

 relation (up to isotopy) of the E), . . 5(R), n ,... . nR and the sequence {fk'} at
 a later stage. (See Remark (3.27).)

 2. We shall also show that if each 2k' is two-sided, then all the Ei) such that

 n, is odd are also two-sided. However (see Remark (3.27)), E) may be one-sided
 in case n, is even.

 3. Corresponding to each 2k we have a varifold V(2k) (see [AW, ? 3.5]);

 since I 2k I is bounded, a subsequence v(E4) of V(2k0) will converge to a
 stationary varifold V such that 11 V 11 = p (p as in (1.3)). In view of the constancy
 theorem ([AW]) the content of the theorem is then

 (1.7) V = n'v(2(1)) + *+n"v(E(R))
 with n, L:() as described.

 The fact that V is stationary, and in fact stable, is readily seen as follows. If

 {T = t}O tei is any smooth isotopy as above, then

 M((,#V(Yk)) = M(V(Tt(Yk))) >.IkI 8k (Ek -(* 0)
 for each t E [0,1] and each k = 1,2,..., by the assumption that {2k} is a

 minimizing sequence. Thus, taking limits as k -* o, we get

 (1.8) M((pt#V) ' M(V)

 for every such isotopy. Notice that this is in fact a stronger condition than

 stability, because here p is any isotopy as described above.
 Since V is stationary in N we have that there are constants 'q E (0, 1) and

 c > 0 (depending only on t) such that c1rq < 1 and (1 - Cp/pO)p-2 11 V II(Gp(y))
 is increasing in p for p ? 'qpo. In particular it follows that

 (1.9) o -2 11 V II(G (y)) ? C2p-2 11 V II(G (y))

 for any 0 < a < p ' po, with c2 depending only on 110.
 For a proof of this (which uses (1.1), (1.2)), see the example [SS, ? 5]; the

 proof is a straightforward modification of standard monotonicity arguments. (See

 e.g. [AW], [MS].)

 2. Preliminary lemmas

 LEMMA 1. Let po be as in (1.1) and (1.2). There is a number 8 E (0, 1)
 (independent of N, po) such that if l C (, satisfies

 (2.1) 1 2 n Gpo(Xo) I< 82p2
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 626 W. MEEKS III, L. SIMON, S. T. YAU

 for each x0 e N, then there exists a unique compact K2 C N with aKs = 2 and

 (2.2) vol(K, n GP (xo))' 8?2pg, X E N.
 This K2 also satisfies

 (2.3) vol(K) ?c I 2 13/2, c = c().
 Also, if 2 S2, then K2 Y B.

 (2.4) Remark. Evidently, if the hypotheses of the above lemma hold and if

 : is isotopic to E via an isotopy T = { tp0','1 as in Section 1, then N -h has
 two components U, V such that U is diffeomorphic to Ke.

 Proof We first note that by (1.1), (1.2) we can find a triangulation XfC0 for N

 such that each 3-cell K of JC0 has diam K ? po and such that there is a
 diffeomorphism PK of KPO _ {x E N: dist(x, N) < po} onto sPO, S - {(x, X2, x3)
 E R3 0 i - ? PO}, spo {x E R3: dist(x, s) < po}, with TK(K) = s
 and

 (2.5) SUPY&K IldyPK C1, supZ S Ild p>IK 1?c1, cl 1 cl0y
 For 8 small enough we can perturb NOY slightly to give a new triangulation X{
 such that L does not intersect the 1-skeleton of X,* and such that for each 3-cell

 K of XfC there is a diffeomorphism {PK of K onto s with

 (2.5)' supYEKIdY4KII ' clsupzEsI1dz4K i1 ? cl, cl = cl(y)

 (Of course XfC then depends on l, but we do have (2.5)' with cl depending only

 on It.) We note that this S(C can be selected so that (by virtue of (2.1)) there is at
 least one 3-cell K0 E Y{ such that l intersects aK0 transversally and

 (2.6) length(E n MKO) c2p, c2 =C
 Since l does not intersect the 1-skeleton of YC, l must be contained in a

 regular neighborhood of the dual triangulation SfC'. Therefore Y. is contained in a

 handlebody and it is then standard that there is a compact K2, contained in this
 handlebody, which is bounded by l; thus

 (2.7) MKY= , K nlE= 0,
 where E denotes the 1-skeleton of YuC. It is also standard that this K2 is then
 diffeomorphic to B in case S2.

 *To see this, let a be any edge of s, let D(a) be the disc normal to a with radius po/2 and
 centre at the mid-point of a, and for each ( E D(a), let at be the segment parallel to a with
 mid-point ( and length equal to length (a) + po. By (2.1) and (2.5) we must have at n PK(I n
 KPO) = 0 except for a set of ( E D(a) of area < c82p2. For 8 small enough it will then evidently
 be possible to choose YC so that each edge of Yu is contained in one of the curves in the family
 {q4j(a ):K E No, ( E D(a), a an edge of s}.
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 It thus remains only to prove (2.2) and (2.3). First take K0 as in (2.6). By
 virtue of (2.5)', (2.6), and (2.7), we must have (by the isoperimetric inequality in

 R2 that

 Km n MOK 1' C382P2, c3 =
 Then by (2.1), (2.5)' and the isoperimetric inequality in R3 we have

 (2.8) vol(K, n K0) ? C483p3, c4
 On the other hand, for any 3-cells K, K' E Yu such that K, K' share a common
 two-dimensional face, we have by (2.1) and the Poincare inequality in R3, that

 min{vol((K U K') n Km), vol((K U K') - K))} c563p.
 Thus if 8 is small enough we must have (since vol(K), vol(K') ? c6p3 by (2.5)),

 either max{vol(K n Km), vol(K' n Ki)) ? c6 3p0

 or min{vol(K n Km), vol(K' n K,)) )} 2 ? p3

 where c6= c6(M). Since this is true for any K, K' ?E Yu sharing a common face,
 we then have from (2.8) that (for 8 small enough)

 (2.9) vol(K n K2) ? C783PO3

 for every 3-cell K in the triangulation W3. By (2.5) and the Poincare inequality,
 this implies, again for small enough S, that

 (2.10) vol(K n Km) < c8I Y. n K 13/2 for all K E u;
 (2.2) and (2.3) now evidently follow from (2.9), (2.10), provided 8 is sufficiently
 small.

 LEMMA 2. Suppose MI,... ,MR are diffeomorphic to D, suppose M, -_ 8M,
 c A - aA, aMCc aA, j = 1,... ,R, where A C N is diffeomorphic to B. and
 suppose that aMi n aM, = 0 and that either Mi n M, = 0 or Mi intersects M,
 transversally for all i 7# j.

 Then there exist pairwise disjoint M1,... ,MR with M. -_ aMi C A - aA,
 aM,= aM, and I M, <I MI, = i1,...,R.

 Proof We can evidently assume R ? 2 and that MI, ... MR-, are already
 pairwise disjoint. (If we can prove the required result in this case, then the
 general result clearly follows by induction on R.)

 Let F1 ... ., Fq be pairwise disjoint Jordan curves such that

 ( R-1 2 q
 , 2.11 Mw I m . ,Iri .
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 628 W. MEEKS III, L. SIMON, S. T. YAU

 and, as an inductive hypothesis, assume the theorem true whenever (2.11) holds

 with r ? q - 1 in place of q (MI ... , MR-1 still being assumed pairwise disjoint).

 For each = 1,... ,q, let Ei be the disc contained in MR such that MEi = Fr,
 let Fj be the corresponding disc in UiRLM with MF = rip and let K C U,= mi
 be a disc such that aK = I;, for some /o and such that

 IK I?I1 Fj ;I Ej I forallj= 1,..., q.

 Let J 7# K be the other disc in ULR M, such that aJ = aK(= F1) Evidently we
 must then have

 (2.12) (K - M) nl U ) X0

 where io is such that K C Mio. Let il (=# io) be such that J C Mil (note that then

 one of io iI is equal to R), and define Mi = Mi ifj # il and Mi = (Mi - J) U K. A A

 By (2.12) we have that each M. is an embedded disc, and clearly aM, aM,,
 A A ~~ ~~~A 1

 M l I?1 M I, M1,1 . . ,MR -I are disjoint and

 (2.13) M. n jUM;) K U ( IFj)

 A

 By smoothing Mi1 near I'. and making a slight perturbation near K, we then
 A il A lo A A ~~~~~~A A

 obtain discs M*,... M* with aW = aM A I I M I R
 disjoint, and (with (2.13)),

 R-1~~11

 A

 Hence we can apply the inductive hypothesis to the collection {M*}, thus

 obtaining the required collection M1,... ,MR.

 3. -y-reduction

 Here and subsequently 8 > 0 is a fixed number such that the conclusion of

 Lemma 1 holds, and 0 < y < 82/9. We shall also assume for convenience of

 notation that po = 1 throughout this section. (This can of course be arranged by
 changing scale in N.)

 Given 1, 22 E C1, we write

 22 << 21 ,
 'Y

 and we say 2 is a y-reduction of L:1, if the following conditions are satisfied:
 (i) 21 , 22 has closure A diffeomorphic to the standard closed annulus

 {x.R2, <IXI.< 1);
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 EMBEDDED MINIMAL SURFACES 629

 (ii) 22 ' 1 has closure consisting of two components DI, D25 each diffeo-
 morphic to D;

 8aA= D U8D2. IAI+1D11+1D21<2y
 (iii) Y homeomorphic to B and

 {AUDLUD2=WY, (Y -aY)n (21 U2)= 0;

 (iv) In case *1 - A is not connected, each component is either not simply
 connected or else has area ? 2/2; here 2 denotes the component of 2

 containing A.

 (3.1) Remark. Notice that in case y2 << El, then each component of 2 is
 'Y

 two-sided in N if each component of 2 I is two-sided in N.
 Notice also that

 (3.2) genus :2 ' genus 2 ,

 with strict inequality if 22 has the same number of components as 21. (Here,
 k

 genus E= genus E(i), E(L),... , (k) denoting the components of E; in case

 is connected and orientable, genus 2 is the number of handles and in case L is

 connected but not orientable, genus L is the number of cross-caps.) Indeed if

 :2 << 2then genus 22 < genus 2 I or else one of the components 2 * (as in (iv)
 'Y

 above) forms two new components A1, A2 (A1 U A2 = (E - A) U D1 U D2)

 in the notation of (i)-(iv) above), where I A1 j + I A 2j *1 +2y ?j 2 I+ /3
 (since 2y < 32/3) and for each i = 1, 2 either Ai is not simply connected or else

 I Ai j >- 2/2. It is thus clear that, given any sequence
 (3-3) Yk <?Ek- ? <.. <E1

 Y Y Y

 there must be a bound on k depending only on genus 1 and j . l/82. Thus
 (provided 2y < 82/3) we have

 (3.4) k ? c,

 where c depends only on 8 and any upper bound for genus(E1) and 1 E I/82.

 We say that I is y-irreducible if there is no z E (C1 with 2 << E. Evidently
 'Y

 by (3.4) we know that for any 21 E C(I, either 21 is y-irreducible or there is a
 sequence as in (3.3) such that 2k is y-irreducible.

 Furthermore, since I (E - E) U (E - E) 1< 2y whenever 2 < 2r, we have

 that if 2, are as in (3.3), then

 (3.5) 1 (2k - 1) U (1 - EJk) I<2cy (cas in (3.4)).
 We also note that if 2 E C is an incompressible surface ([HJ, Ch. 6]) and if

 (3.3) holds, then Ek is homeomorphic to disjoint union of 2 and (k - 1)-

This content downloaded from 129.93.180.106 on Tue, 06 Feb 2018 14:54:09 UTC
All use subject to http://about.jstor.org/terms



 630 W. MEEKS III, L. SIMON, S. T. YAU

 diffeomorphic copies of S2, each diffeomorphic copy of S2 having area ? 02/2.

 (There is thus a fixed bound on the number of diffeomorphic copies of S2
 involved.)

 (3.6) Remark. One readily checks that Y: E C1 is y-irreducible if and only if
 the following holds:

 Whenever A is a disc with aA = A n Y and I A < y, then there is a disc
 A C I with aa = 8a and I A j<2/2.

 It will be convenient to consider a slightly weaker relation than <: viz. for
 e1 2 c (C we write
 2 1

 (3.7) 22<
 'Y

 if there is a J1E(21) with |(E1 - 21) U (21 - 21) < y and 2 <? 21
 'Y

 In view of the above discussion of the relation <?, it is evident that if
 3y < 02/3, which we subsequently assume, and if

 (3.8) Ek < k-l < ..< 21

 then (cf. (3.4), (3.5))

 (3.9) k c,

 (3.10) I (k 1) U (21 - 2k) I< 3cy.
 We shall say that 2 is strongly y-irreducible if there is no E C1 with

 . < E. Of course strongly y-irreducible implies y-irreducible. Also, given E E C1

 we have either that 21 is strongly y-irreducible or else there exist 2 25 ... k EC1
 such that 2k iS strongly y-irreducible and such that (3.8), (3.9), (3.10) hold.

 (3.11) Remark. If E 1 5(z) with I (E - 21) U (E ) 1< 0 < y, and if
 2 is strongly y-irreducible, then 21 is strongly (y - 0)-irreducible (because

 I (21 , 2) U (2 - 21) I<y -0 implies I (E - E) U (E - E) I< y, by virtue of
 the fact that I (E: -,El) U (21 - E:) I< 0).

 The following theorem gives our main result for strongly irreducible l E C1.
 In this theorem we use the notation that

 E(2.) =I I- inf~e(~~

 THEOREM 2. Suppose A C N is diffeomorphic to B, suppose L E C1,
 E(z) ? y/4, Y is strongly y-irreducible, Y intersects aA transversally, and,
 for each component F of Y n aA, let Fr be a disc in aA with aFr = F and

 I Fr min{ I Fr l, - A Fr . Suppose furthermore that :_q= | Fj ? y/8, where
 Fj=Fr and Fl, .,q denote the components of E n aA, and let Y. denote the
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 EMBEDDED MINIMAL SURFACES 631

 union of all components A of 2 such that A C KA and KAn fl = 0 for some
 KA C N with KA diffeonorphic to B.

 Then I E l E(z) and there exist pairwise disjoint closed discs D1,. ,P
 with

 P q

 (3.12) D, C Y. - So, aDi c MlX 2 Di < Fj l+E(E),

 and with

 p

 (3.13) U ((pl(D) - WDI) c A - aA
 j=l

 for some isotopy = {Pt}0?t51i of N such that tp(x) = x for all (t, x) E
 [0, 1] X W, W sone neighborhood of (E - 20) , U (Di - aDj).

 (3.14) Remark. Let K1,... ,KS be diffeomorphs of B such that SO C U>1 AK
 and K, n 2 0, for all j = 1,... ,s.

 Since each K is diffeomorphic to B (and since ( U >s=1K,) n (E - S) 0
 by definition of :0), we can show that for each E > 0 there is an open
 U D U>s= K and an isotopy 4' {44}05t?l with U n (E -' SO) = 0 and

 (3.15)

 AtJx) =x for all (x, t) c (N - U) X [O. 1], A(U) C U. I C1(20O) 1< El

 and such that each component of 41(20) has diameter less than E.
 It follows, by definition of E(2), that

 (3.16) 1 2 o L -E(E) and I 2 - O o I'infEI(y-0) I 2 I +E(2).

 Because of this, and because of (3.15) and Lemma 1, it is not difficult to see that

 the general case of Theorem 1 follows directly from the special case where

 20 = 0.
 We shall therefore assume, in the proof below, that

 (3.17) z0= 0.
 Proof of Theorefm 2. We proceed by induction on q. Assume that : satisfies

 the hypotheses (3.17) and (in the notation of Theorem 2)

 q q

 (3.18) Fj I c y/8, E(Y) < y/2- F, , : is strongly 1-irreducible,
 j=l j=l

 where yj= y/4 + 42.L1 F, +E(z), and, as an inductive hypothesis, assume
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 A A

 the theorem true, with I = 0 and I1I D.I' l Fj I +E(z), whenever
 l: Ez (E) satisfies the hypotheses (3.17), (3.18) with q - 1 in place of q and L in
 place of E.

 Relabeling, if necessary, we may assume that Fqn r 0 for all j #4 q.

 Since E is strongly 1-irreducible and I Eq V< 1. we know by Remark (3.6) that
 there is a disc D C E such that aD = rq and I DI< 82/2. Then D U Fq is
 homeomorphic to S2 and j D U Fq I < 82/2 + 82/2 3 82, and hence by Lemma
 I we know that D U Fq = aU, U open, with U homeomorphic to B. Let A be the
 component of E containing D, and consider the possibility that A - D C U.

 Since U - B, it would follow that A C E0. Since we assume (3.17), this is
 impossible. Hence we must have (again using (3.17))

 (3.19) (E -D) n u= 0.

 Writing I* = (E - D) U Fq and Fq ? = {X N: dist(x, Fq) < E}, for each
 E > 0, we can select a continuous isotopy y= {yt}O tf1 such that Yt(Fq, e) C Fq E,

 yt(x) - X, X X Fqn I E* n [q e| (y1(E* n Fq,) E * n Fq +E
 yl1( * n Fq ) n aA = 0, and E*--y(*) E C1. Then we have, for E small
 enough,

 I= iq 1 Ei * E 4E), E* n aA = U j-li

 (iii) jz*j~2j|+jFqj/DI +E.

 Notice that (iii) is equivalent to
 A

 (ii)f E(E*) < E(z) + I Fq | |D I +E.

 Taking E ?1 Fq J, we deduce from (i), (ii) and Remark (3.11) that E is strongly
 y*-.irreducible, where

 q

 y* = y/4 + E(E) + 4 IFj(jDS +21Fqi)
 j=1

 9-11 =~~~~~~~j 1/ ~)+42I~l+1q-~

 By (iii)' we thus have y* ? y/4 + E(E*) + 4j |' Fj |. Furthermore, by
 (iii)',

 q q-1

 E(E*) E(E) + 2iFq i y/2- 2 iFj I+21Fq Y y/2- 2 Fj.

 A

 Thus E * satisfies the inductive hypotheses with q - 1 in place of q. Hence there
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 A

 must be pairwise disjoint discs A1,.,Ap contained in E* with aA c MA,
 (3.20)

 U UA, n (A - A) =2* n (A -aA), A il Fj I~ +E 2*)

 and with P1(A,) 8A, C A - aA for some isotopy 'P {'k}0?t< which holds a
 A

 neighborhood of the set 2* , Up1(A, 8A) fixed. It follows that there are

 pairwise disjoint discs A1... .,P C 2* (2 - D) U Fq with
 P q-1

 (3.21) 1Ai ? I +E(q)+ IFq1D

 P

 U Ai n (A - aA) = i* n (A - aA), aAi ~
 i=1 1=

 and A1(Aj) 8A1 C A - 8A for some isotopy 4' {4'}Ost?1 which holds a

 neighborhood of the set 2* - UP(A1 aAj) - Fq fixed. (In fact we can take
 As = y7'(Ls) and 4 = +y.)

 Now, to proceed, let U (with aU= D U Fq) be as above, and let /3

 { I3J0?cti be a continuous isotopy such that I3t(U) C U, P3t -:D -12 -D and
 /i(D) = Fq. (Notice that such an isotopy exists because U B and because
 (2 - D) n U= 0 by virtue of (3.19).) Consider the following two cases:

 Case (i): Fq C U p A,

 Case (ii): Fq ? U P 1 Aj

 In Case (i) we select the discs D1, . . ., Dp by taking Djo = (A jo - Fq) U D for

 the (unique) jo such that Fq C j, and we select D, A, for al j jo. Also, we
 define a continuous isotopy qp {=Pt}OstIo by p * /3; by smoothing Cp we
 obtain an isotopy p satisfying the required conditions. (Here ' * / is defined by

 'P*,B(t, x) = ,(2t, x) if 0 < t 2, and 'P*,B(t, x) = '(2t - 1, ,(1, x)) if 4 < t
 <1.)

 In Case (ii) we define discs Dl,...,Dp+l by setting D, = Ai, j = 1,...,pI
 and D. In this case we define a continuous isotopy ip by setting
 AIp A A A

 = /3 * ('P */3), where /B = {3t}Ostcl is a smooth isotopy such that /3t(x) x for
 A

 all (x, t) c (2 - D) X [0, 1] and such that /3(Fq) is a disc D C A with aD aD,
 D n aA = aD, and D n 't(2*) = 1q for all t F [0,1]. Now we claim that in
 Case (ii) there is a neighborhood W of aD(= Fq) such that W n D C A.
 Otherwise we would have W with W D aD and W n (2 - D) C A MA, and
 this would imply Fq C UtP UA by virtue of (3.21), thus contradicting the fact
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 that we are in Case (ii). By smoothing qp we then again obtain the required
 isotopy (p.

 In each of the above cases we have, by (3.21), that

 P q-1

 Ail IFI +E(E) + IIFq -ID
 1=1 j=L

 and hence

 q-1

 2jDjj-< 2 jFjj +E(E) + JFqj -IDI +IDI
 q

 = I lFj I +E(E).
 j=L

 This completes the proof by induction.

 We would of course like to apply Theorem 2 to the minimizing sequence

 {fk} of Section 1. However, the theorem is not directly applicable because zk iS
 not necessarily strongly y-irreducible for any y. However, we now show that

 there is a yo > 0 such that, after y0-reduction, 2k yields a strongly yo-irreducible

 Ek with limv(lk) = limV(2k). (Notation as in ? 1.)
 To see this, consider 0 < y < 82/9. For q = 1,2,. .., let kq(y) be the

 largest integer such that there exists (2p , 1 1 ... kq(Y) with
 (3.22) 2(kq(y)) < ... < 2(2) < 2(1) = 2

 Y Y Y

 for convenience set kq(Y) = 1 if Eq iS strongly y-irreducible. Then (noting that

 kq(Y) is bounded independent of q and y by (3.9)), we let 1(y) be the
 non-negative integer defined by

 (3.23) 1(y) = lim sup kq(y).
 qua oo

 Evidently 1 is an increasing function of y; hence since 1 is integer-valued, there is

 .Y E (0, 82/9) such that

 l(y) -(yo) for all y F(O, yo]

 Now for each n 2 y>- there is a qn 2 n such that kq(l/n) = l(1/n)(= 1(yo)).
 We set

 =kqn(1/n)

 n qn

 Evidently 2 n is then strongly y0-irreducible for all sufficiently large n, because
 otherwise we would have, for infinitely many n, that

 = J:(1) > 2 (2) > . .. > 2kqnt 1) > A
 Eq q n q n Yo

 n n n
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 A

 for some &n E1, thus implying that

 kqn(YO) 2 l(yO) + 1

 for infinitely many n, which contradicts the definition of 1(yo) in (3.23).
 Thus, relabeling if necessary, we can assert that I is strongly yo-irreducible

 for all n, and that (by (3.10))

 (3.24) 1 (k `-qk) U ( qk k 1:)I? C/k
 where c is independent of k. Thus

 (3.25) lim v(Sk ) = 1'M V0k )

 Further, since Eqk can be recovered, up to isotopy, by cutting out discs of zk
 and adding arbitrarily thin tubes, we evidently have

 (3.26) 2 k Iinfe-k) I 2 I +'k

 (where 13k -- 0 as k -m x), by virtue of (3.24) and the fact that the original

 sequence {fk} is minimizing.

 (3.27) Renark. We are now in a position to describe more precisely the

 relation between the minimizing sequence {fk}, the surfaces V(1),..., (R), and
 the integers n, 1. . -nR of Theorem 1. We shall in fact prove that, if Sk is obtained

 by yo-reduction of qk as described above, then, for all sufficiently large k,

 R

 (3.28) zk E ?(Sk), Sk U Sk),
 i=O

 where lim I S(?) n K 0 for each compact K cN, s() n (UR 1S")) 0, and,
 for k sufficiently large and 1 1,... , R, SV) is defined by

 (3.29)

 mi

 U {x E N: dist(x, 2(i)) = r/k} if n, = 2m, is even
 skM r= 1

 i2i) U (U fx N: dist(x, V()) = r/k if n =2m + Iis odd.
 r=1

 It is important to note here that in case L) is two-sided (i.e. has a smooth

 unit normal), the set { x E N: dist(x, 2(i)) = e} (for E sufficiently small) has two
 components, each isotopic to (i); on the other hand, if l(i) is one-sided then this

 set is a smooth connected two-sided surface which gives a double cover for l()

 via the nearest-point projection.
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 Because of this last point, and because of Remark (3.1), we see that if n1 is

 odd and if the lk are all two-sided in N, then V) is two-sided in N. Nevertheless,
 it can of course happen that some of the V) are one-sided in N, even if each Ek
 is two-sided and N is orientable.

 4. Minimizing sequences of discs in N

 Here we wish to explain the straightforward technical modifications needed

 to extend the interior regularity results of [AS] to the present case when N is a

 homogeneously regular Riemannian 3-manifold as in Section 1. (Only the case

 N = R3was specifically considered in [ASI.)
 It is emphasized that here we shall not need any boundary regularity theory;

 in fact only Sections 3-6 of [AS] are needed. (Lemma 2 above will be used to

 replace Lemma 2 and Corollary 1 of ? 2 of [AS].)

 We shall need the following technical lemma. In this lemma du denotes the
 distance function of U defined by

 du(x) =dist(x, U), x cN.

 We also let

 U(s) {x E N: du(x) < s} for each s > 0.

 LEMMA 3. Suppose U C G,72(Xo), U - B, and U is convex in the strong
 sense that d is a convex function on {x E N: du(x) < Opo}(') for some
 0 E (0, 1/2), and let 13 ? 1 be a constant such that, for each s E (0po/2, 0po),

 (4.3) min{I E I, I aU(s) E l} ? (length(aE))2
 whenever E is a disc contained in a U(s).

 If 81 = min{8, (1 + 64c)- 'o'-1/2} (c, 8 as in Lemma 1), if M is any
 smooth disc with aM C N U and with M intersecting aU transversally, if

 (4.4) aU Iw +I Ml'. 82po2/16
 and if A is any component of M - U with aM n A = 0, then there is a unique

 KA C N U such that

 (4.5) vol(KA) ? CS3pg 8KA =AUF.

 where F C au is a compact (not necessarily connected),surface with aF= aA
 and

 (4.6) I FI<I An U(po) I.

 (')By this we mean that if p is a geodesic in U(Opo) which is parametrized by arc length s,
 a ? s ? b, then d,,(q(s)) is a convex function of s, a ? s ? b.
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 Proof First find a closed FO C au with M1O = aA. (Evidently such an FO
 exists by virtue of the fact that aU : S2, although of course FO may not be

 connected.) Then (4.4) implies that I FO I + I A ? ?2p0 82po and hence by
 Lemma 1 there is a compact W with

 vol(W) < c83pg, aw= FO U A.

 Then we set KA = W - U. Evidently then (4.5) holds with either F = FO or
 F = aU- Fo. The uniqueness of KA is evident in view of (4.5) and (1.1).

 To proceed, define, for t ? 0,

 F, = KA n {x: du(x) = t}, Et = {x E A: du(x) < t}.

 Now by the convexity of du on U(Upo), we know that Ad >- 0 in U(0po). Hence
 for 0 < t1 < t2 < Opo we can use the divergence theorem (applied to the vector
 field grad du on {x E KA: t1 < du(x) < t2}) to give

 I tlI t2 I- (PD, grad du >|X
 Et2'- Et1

 where v is the unit normal of A pointing out of KA. Since I K , grad du) I-' 1 and
 since strict inequality must hold on a set of positive 2-dimensional measures in

 Et2 "Et unless E = Et,, we deduce that

 (4 7) 1 Ft, I-IFt <I Et2I 1- Etl I
 for all O < t1 < t2 < Opo, and that for such tj, t2

 (4.7)' It Ft, |-1 Ft <' E I -1 Et
 in case E #A Et .

 We also have by (4.5) and the co-area formula that

 f80i Fs I ds ? vol(KA n U(Opo)) < C? 3
 o~~~~~

 and hence

 F I 4cO 183p2

 for a set of t E [0, 0po] of Lebesgue measure > 30po. But then, since 81 <
 (64c)-1', we have from (4.4) and (4.7) that

 (4.8) | | p2/16 for all t E [O, 30po/4].
 Also, setting t1 = 0 and t2= t E (0, 0po] in (4.7)', we have

 (4.9) 1 FI -1Et 1<1Ft I, t C(O' po].

 If I F6OO 0 we then have (4.6) by setting t = Opo. If I F6po 1 # 0, we argue as
 follows. By (1.1) together with the fact that U(Opo/2) contains a geodesic ball of

This content downloaded from 129.93.180.106 on Tue, 06 Feb 2018 14:54:09 UTC
All use subject to http://about.jstor.org/terms



 638 W. MEEKS III, L. SIMON, S. T. YAU

 radius 0po/2, we may use the isoperimetric inequality (in R3) to give

 I aU(t) I' (vol(U(t)))2/3, I au(t) 1' (vol(U(t)))2/3 ?> 2po/8,

 t E [0po/2, 0po]. Then by (4.8) we have

 |Ft l< C I a U(t)| for all t E [ Opo/2, 3 Opo/4] ,

 and it follows from (4.3) and the co-area formula that, almost everywhere

 t E [0po/2,30po/4],

 (4.10) I~l at 12 =#I Mt 12.,( jEtj)

 Thus (4.9) implies

 (4.11)

 Fl -IEtI</( (IFI - Et I)) almost everywhere, t E [0po/2, 0po].

 By integration over [0po/2, 30po/4] (using the fact that FJF -| Et| is a
 decreasing function), we then have

 Il F -I Eopo/2 I - IFi |-E30po/4 I ' 13'/2 po/4

 provided that JF >jE30po/4I. However, since F ? 81po (by (4.4)), this is
 impossible by the choice of 81. Thus I F I ' I E30po/4 I < I EOp0 I since I Fp0 I O ?

 With Lemma 3 proved, it is now elementary to modify the proof of the

 Replacement Theorem (Theorem 1 of [AS]) to the present manifold setting:

 Firstly the hypothesis in [AS: Theorem 1] that U is convex is replaced by the
 hypothesis that U is as in Lemma 3 above. We also need the hypothesis that U
 and the disc M under consideration satisfies (4.4), and the hypothesis (iii) of [AS,

 Theorem 1] is replaced by the hypothesis

 (4.12) a UM au is not contained in any KA,

 where A is any component of M- U with aM n A = 0 and KA is as in Lemma
 3 above.

 We would also point out a misprint in the statement of Theorem 1 of [AS]:

 the equality (N -M) n a U= 0 in (iii) should read (No -M) n U = 0 (so

 that the inward pointing co-normal of aM points into U at points of aM n a8U).
 With these modified hypotheses, Theorem 1 of [AS] carries over directly to

 the present setting. The proof is essentially unchanged except that (4.6) of

 Lemma 3 is used in place of inequality (3.1) of [AS].
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 The filigree lemma (Lemma 3 of [AS]) also directly generalizes to the

 following:

 In the present setting we take the same hypothesis, except that each Y, is
 required to satisfy the hypotheses of the set U of Lemma 3 above (with constants

 fl, 0 independent of t). Also, (4.12) is required to hold with U = Y, for every
 t E (0, 1) and the hypothesis that 8M is to be contained in the unbounded

 component of R3 (Y, U (M aM)) is replaced by the requirement that (4.12)
 holds for U = Y, for every t E (0, 1). Then the proof of the filigree lemma in the
 present manifold setting is essentially unchanged.

 We can now apply all the arguments of Sections 5, 6 of [AS] (using the

 modified replacement and filigree lemmas as described above, and using Lemma

 2 above in place of [AS, Lemma 2, Corollary 1]) in order to establish interior

 regularity for varifold limits of minimizing sequences of discs in N.

 The reader may wish to note that in those parts of the argument relating to

 homothetic expansion, it is convenient to assume that N is (at least locally)

 isometrically embedded in some Euclidean space. We also remark that it is not

 necessary to use any analogue of the convex hull property (Appendix A of [AS])

 because here we shall be concerned only with interior regularity. We do need the

 fact that if M1, M2 are C2 minimal surfaces in N which in terms of suitable local

 coordinates x', x2, x3 for N are expressed as

 x3 = u1(x', x2), x3 = u2(x1, x2)

 for (x', x2) E U C R12 (O open and connected), and if ul ? u2 in Q. then
 u1 = u2 at some point of Q implies that u =u2 in U. This is readily seen from
 the fact that the difference qp = u- u2 satisfies a uniformly elliptic equation of

 the form Dj(ajjDjcp) + ccp = 0, and hence the required identity follows from the
 Harnack inequality for such equations.

 5. Convergence of the minimizing sequence {k}

 In this section we let {okl C Cl be any strongly yo-irreducible sequence
 such that I Ik +genus (2k) is bounded, such that (3.26) holds, and such that
 lim V(~k) exists. (Thus the discussion here is certainly applicable to the sequence

 A

 {ok} constructed in ? 3.) Let 2k be obtained by deleting all components A of Ek
 such that there is a K - B with A C K and 2k A = 0. By virtue of Remark
 (3.14) we know that (3.26) continues to hold for Ek and that V(Ek) has the same

 limit as V(Ok). Furthermore it is easy to check (again using Remark (3.14)) that A

 Ek is strongly (3yo/4)-irreducible for all sufficiently large k.
 Let V = limV() ( lim v(2)) and let x0 e sptII V II. By virtue of (3.26)

 we can apply the reasoning of Section 1 to deduce that (1.9) holds for V. Now by
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 the co-area formula we have

 (5.1) f length( , n a(xo)) ds ' k n (Gp(xo) - GPIO(xo))
 p-U

 which holds almost everwhere, p E (0, po), a E (0, p). Taking a = p/2, (1.9)
 then gives

 (5.2) f P length(:kn a8G(xo)) ds ? cp
 p/2

 for all sufficiently large k, where c depends only on t and any upper bound for

 p-2 ll V II(Gpo(x0)). Hence we can find a sequence {Pk} C (3p/4, p) such that Ek
 intersects aGpk( x0) transversally and such that

 (5.3) length( kn aGlGpk( Xo ) ? Cp ? cPO,

 for all sufficiently large k, provided p < 'qpo, where for the moment q E (0, 1) is

 arbitrary. If q is sufficiently small (depending only on yo and II V II(N)) we see
 from (5.3) that Theorem 2 is applicable with Ek in place of 2 (with y0/2 in place
 of y and with Gpk(xo) in place of A). Then there are discs W) D ( qk) C Ek
 and isotopies Oak) = {gtk)}0't'i of N such that

 kaDk C aGPk(XO), Ek A Gpk(xo) = (QikD ') f GJx0)
 (5 .4) =

 t ~~~~~~~~~~~qk T(k)(Dki)) -Dki C Gpp(x0), j Dk1 |cp C?'q 2po
 i=l

 where c is independent of k, q, p. Since I D ?) 1.< cq2p2, we know that (for q
 sufficiently small), by the modified replacement lemma described in Section 4,
 there are disks Dk1) with

 (5.5) a6)= 8Dk , D i) D a Di) C Gpk(Xo)

 (5.6) 115(i) I- I D" |
 Now by (5.4), Lemma 2, (5.5), (5.6) and (3.26) (with 2k in place of k), we
 deduce

 (5.7) | W Ik 1' Ik |i I+ek, jCinfejJ I |A I| +2ek Jo .. = i qk5
 where Ok denotes the set of all discs in N with boundary aD'), and where

 lek, 0 as k -x o.
 By (5.4) and (5.7) we may use the modified filigree lemma, as described in

 Section 4, to infer that there is an 1, independent of k, such that for all
 sufficiently large k

 (5.8) WDki) n Gp72(xO) '> 4ekj
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 for at most 1 integers j E { 1,... ,qk j. Thus, relabeling if necessary, we know that

 [(lim v( Di) ) LGP/2(xo) = V LGP/2(XO)

 ( {lim v( D') )) LGp/2(XO) = 0.

 Now let {k'} c { k} be a subsequence such that lim v(WDv)) exists for each

 = 1,... , 1. In view of (5.9) we can now use the theory of Sections 5, 6 of [AS]
 (modified as described in ? 4 above and applied separately to each of the

 sequences {D (i)}, i = 1,... , 1) in order to deduce that there are integers
 mi1,... ,mP and stable properly embedded minimal surfaces MM ,...,M(P) in

 GP/4(XO) such that
 P

 (5.10) VLGp/4(xo) = i Vmm),

 where V = lim V(Ek) = uM V( k). Since x0 E sptll V II is arbitrary, we thus de-
 duce that there are positive integers R, n1,... n R and complete stable properly
 embedded surfaces V('),... 2(R) such that

 (5 .11) V = nlvV(() ) + * - * +nRv( 2(R)).

 Notice that by letting a 10 in (1.9), we have that
 R

 V 11 Gpo(xO) -cpo for any xO e U 2(i),
 j=1

 where c is independent of x0. Since IIV 1(N) < oc it follows that each l:(i) is
 compact (and R = o is not possible) even when N is not compact (although of

 course we have used very strongly the fact that N is at least homogeneously

 regular). In particular we have proved Theorem 1, except for the assertions (1.4),

 (1.5).

 We now want to show that the assertions of Remark 3.27 apply ((1.4), (1.5)

 of Theorem 1 will then follow directly).

 Firstly, by (5.11) we note that there is a positive sequence hk 10 such that

 2k intersects each {x E N: dist(x, (i)) = hj transversally and such that

 (5.12) length( k {x: dist x, U Ei))} = hk)

 + zk n {x: h-1 > dist x, U (i)) > hk} 0
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 as k -- oo. Furthermore, by (5.11) we know that if p ? ijpo, where q depends
 only on yo,V, then IIVII(GP(x0) - GP-G (xo)) < cpa for each a E (O, p),
 and hence by (5.1) we have in place of (5.2) the more general inequality

 '-ft p length(Y' n aGs(xo)) ds ? cp for all sufficiently large k (depending on
 a). It follows that (5.3), (5.4) hold for some sequence {Pn) such that

 PkTP aske-oo,

 (5.13)

 length(k n {kt(Xo) n x: disttx, U2i)) ? hk4 0 ask e ,

 Ak aG (xo) n Ax: dist x, U (i) hk} = 0.

 By (5.13), (5.5) and an obvious area comparison argument, we know that for

 each i =1,.. .1 either I D(i) -* 0 as k - oo or else, for all sufficiently large k,

 (5.14) aD(') is not null-homotopic in aGpk(xo) n {x: dist(x, E(i)) < hk

 and

 (5.15)

 (I- _ (p))02 ?lD<I) n GG(xo) I- (a + E(p))a2, forany a[p/2, p],
 where c(p) 0 as p 40. (?(p) is independent of x0, k, and the sequence Pk used in
 the construction of D(').) Again relabeling if necessary, we see (from (5.9) and
 (5.15)) that we can take 1 n, in the above discussion (so that (5.9) holds with

 1 n,) and that (5.14), (5.15) are valid precisely for i 1 1,... ,n1; this is subject

 to the stipulation that x0 E E.i) and that p is sufficiently small (in fact p ?< po,
 where i1 depends only on y0 and V).

 On the other hand, if we select { k'} c { k} so that lim v( D()) exists for each

 i-... , n,, then (5.11), together with (5.15) and the interior regularity theory
 of [AS, ?? 5, 6] (modified as in ? 4 above and applied separately to each of the

 sequences {DO)}), imply that

 (5.16) limv(D(,)) - v((i) n G,(xo))X i . 1, ... n
 again provided x0 E I(i and provided p is sufficiently small. By (5.11) this also
 gives

 qk'

 (5.17) lim ( ( ( 55) te0.

 A simple argument using (5.16), (5.17), (5.14), (5.12), (5.11) and (5.1) then
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 demonstrates that the sequence Pk T P can in fact be selected so that all of the
 above continue to hold, together with the additional property that

 (5.18) limlength(aD()) = length(v(') n aGp(xo)), i 1,..., n,
 and

 (5.19) limlength (k, n aGp,(X0) - (U aD)) |= o.

 Since this can be done for any x0 e E (I E {1,... ,R}), and any p
 sufficiently small depending only on 'yo and V, it is now not difficult to conclude
 the proof of the assertions of Remark 3.27.

 Specifically, we first note that for each sufficiently small a, there are points
 Y1, . . *, e E UR.L(i) such that

 (5.20) G./8(yi ) n G,/8(Yi ) = 0 C i7&a
 R P

 (5.21) U 2:() c U Go/2(yi)i
 j=L i=L

 Let us agree that a is small enough to ensure that Gj(y) n (UR= 2()) is a single
 smooth two dimensional disc for each y e U R ^2(i), and also small enough to =1=
 ensure that (5.12)-(5.19) hold with any p < a, any x0 E 2:(), and with any
 (yo/2)-irreducible minimizing sequence Yi1) e^f(Yk) in place of yk* (Of course

 A A

 such a replacement of Yk by a new sequence 2?k') requires that we select a new
 sequence Pk T P; nevertheless, all of the above discussion applies.) Now select

 A(U
 vi E (u/2, a ) such that, with the notation Gi = Gi (yi) n fi=17
 (5.22)

 aGi, aG, are either disjoint or intersect transversally, i # j,

 aGi n aG, n aGk = 0 for all triples of distinct integers {i, j, k E 1,. . . ,P).
 A

 Thus each component of (U-L~')) (UiPaGi) is a polygonal region with
 boundary consisting of closed arcs contained in the aGi, and each vertex on this

 A

 polygonal boundary is contained in precisely two of the aGi. Suppose the totality

 of all these vertices is a collection P 1, . . P., and let T < a/2 be such that
 G,(p,) n GT(Pk) = 0 for all j :# k. By applying Remark 3.11 and the above
 discussion ((5.12)-(5.19)), with T in place of p and Pm in place of xo, it is quite

 A

 easy to see that, since T < a, we can modify Yk to give a (yo/2)-irreducible
 A 1 (A A

 sequence 'k) E k) with lim v(Y'(kl)) = lim V(4k) and with
 R

 (5.23) Y(kG) n G,2p)= U Ski n Gp ) m =) ... * Q.

This content downloaded from 129.93.180.106 on Tue, 06 Feb 2018 14:54:09 UTC
All use subject to http://about.jstor.org/terms



 644 W. MEEKS III, L. SIMON, S. T. YAU

 where S(i) are as in Remark 3.27. Then applying (5.12)-(5.19) with 2 in place

 of k with Y7lE 2(i) in place of x0 and with an, in place of p, we obtain p7' T 1,,l

 and discs f Dk 1,)} m = 1,. .., 5Q.i = 1, . .. 5%5,such that, for each m Ez f 1, . .. 5P)
 with y e,

 qk

 r(i) n Gp.(ym) = U DW',) n Gp .(Ym)j aD(' ) c aG
 m=1

 qk

 v(D(' V( ) (n G,",(ym)) 5 i = l,. .. 5 ni, W IDk m, l
 (5.24) i=n,+1

 lengthOW~kim) ) -*length(Vl() n aGm(ym )), m =1 j

 length(Xk n aGp.(ym) ( (y UaDi )) 0,

 and such that (5.14) holds with DW, m) in place of D i = 1,..., n. In view of
 A (1)k A k~ A () , A

 (5.23), (5.24), we can modify E slightly to give ( ) E 1)) (- 1(Lk)) such

 that lim Ek(k2) limV(:k) and such that (5.23), (5.24) hold with in place of
 V) and with p" a for all sufficiently large k and for all 1 1,.. ,R. It is then

 quite straightforward to show that Ek E f(U"_0S"')), with V) as in Remark
 3.27.

 Having established the assertions of Remark 3.27, it is now straightforward
 to check that (1.4) and (1.5) of Theorem 1 hold. Indeed (1.4) is a direct
 consequence of (3.27), and (1.5) is established as follows:

 First, from the fact that (3.26) holds, it follows directly from (3.27) that each

 {Sf')} (for any j E .1... ,R}) satisfies

 (5.25) ISkPI? inf | 2I?k k- Oas k --,

 E C { x: dist(x, Y,(i))< d/2)

 where d inf dist(x, y): x, y lie in distinct components of U Y.1(I)} (and
 d = oo when R = 1). In case 2:(i) is two-sided in N it follows directly from (5.25)
 that

 inf Y:
 E qg(Y'0))

 E, C { x: dist(x, Y,(i)) <d/2)

 and it is then standard that (1.5) holds in this case. In case 2:) is one-sided in N
 but each Ek iS two-sided in N, we have clearly that each component of Ek iS
 two-sided in N, and hence each component of Ski) is two-sided in N (by (3.27))
 (and hence, incidentally, n, must be even by virtue of the definition of Ski) and

 the fact that E:() is one-sided in N). Then if Tk") is any one of the components of
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 S~k) we have that V) is a double cover for 2(i) with limv(T(i)) 2v(Y:(i)) and
 (by (5.25))

 (5.26) | ~)cinf | |+e,,, et 3- 0 as k X . TV) I 2 c q?(TJ k k
 2 C { X dist(x, V) < d/2)

 It is then again standard that (1.5) holds.

 As a matter of fact, the above argument shows more generally that (1.5)

 holds whenever either () is two-sided in N or when l) is one-sided in N and
 n > 1, because if n > 1 then SV) must have at least one two-sided component
 T(i) as in (5.24).

 6. Existence theorem for homogeneous regular manifolds with

 boundary

 In this section, we generalize the main existence theorem to complete

 homogeneous regular manifolds N with aN #7 0. (A manifold with boundary is
 called homogeneous regular if it is a subdomain of some homogeneous regular

 manifold without boundary.) We assume that aN has non-negative mean curva-

 ture with respect to the outward normal. We may allow aN to be piecewise

 smooth if the intersecting angles between the boundary pieces are "convex."

 (See [MY2], Section 1.)

 THEOREM 1'. If N is a homogeneous regular manifold whose boundary has

 non-negative mean curvature with respect to the outward normal, then the same

 statement as in Theorem 1 holds.

 Proof Let us first assume that aN is compact and smooth. As in the proof of

 Theorem 1 of [MY3], we can isometrically embed N into a complete homo-

 geneous regular manifold N (without boundary) as a subdomain. The manifold N

 can be chosen to have the following properties:

 (i) Any compact minimal surface (with boundary in N) of N is a subset
 of N.

 (ii) There is a diffeomorphism isotopic to identity which maps N onto

 N and is equal to identity in the complement of a regular neighborhood of

 aN in N.

 (iii) For any constant c > 0. there exists a compact set of N so that any
 geodesic ball of radius c in the complement of this compact set is included in an

 open subset diffeomorphic to the ball.

 It is clear that Theorem 1' follows from Theorem 1 and these properties
 of N.

 When aN is compact but piecewise smooth (see [MY3], Section 1), the

 approximation procedure used in [MY3] can be applied to the present situation.
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 Let us now study the case when aN is not compact. Let Qi be an increasing
 union of compact subdomains of N so that the distance between a3i \ aN and
 a32- 1 \ aN tends to infinity as i -s o. By changing the metric in a neighborhood
 of au2 \ 3N suitably, we can find a sequence of metrics dS' on each hi so that

 dS' I j dS'2+ j hi for j ? i + 1 and each a i has non-negative mean curvature
 with respect to the outward normal with respect to dS2.

 If for some compact set K C Qi, lim inf I 1 knK I> O and if 2k C 2i for
 some k, then we can apply our previous statement to find the minimal embedded

 surfaces 7.i'), 5 22),***, and 2'k) in 2i which satisfy all the conditions stated in

 Theorem 1.

 Since the total area of these minimal surfaces is bounded by a constant

 independent of i, one can prove that on each compact subset of N. the minimal
 surfaces 7.ii) converge as i -> o. The rest of the arguments are the same as in the
 proof of Theorem 1.

 THEOREM 1". If N is a complete manifold whose boundary has non-negative

 mean curvature with respect to the outward normal, then the results in Theorem

 1 hold except that Sk, need not have bounded diameter and 2(k) need not be

 compact (but it has to have finite volume).

 Proof It is basically the same as the one given in the proof of Theorem 1'.

 7. A covering space of an irreducible orientable three-dimensional

 manifold is irreducible

 In this section we will see how the Fundamental Existence Theorem 1 can

 be applied to get new information on the topology of three-dimensional mani-
 folds. It has been conjectured that if N is a compact irreducible orientable

 three-dimensional manifold with infinite fundamental group, then the universal

 covering space N of N is diffeomorphic to R3. This conjecture would be

 established if it could be shown that N is irreducible and simply connected at

 infinity. In this section we shall prove that N is irreducible. In order to prove this

 result, we shall need the following lemma.

 LEMMA 4. Let N be a three-dimensional Riemannian manifold. Let S1 and

 S2 be two distinct embedded two spheres in N which do not bound balls and

 which have least area among spheres with this property. Then Si and S2 are
 disjoint.

 Proof First suppose that S1 and S2 intersect transversely. In this case

 I= Si n S2 consists of a collection of Jordan curves each of which is the
 boundary of exactly one disc on S1 and another disc on S2' Let 'D be the
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 collection of all such discs. Choose a D E 63D such that

 IDII<D't forallD'E6D.

 Let y= 3 D. Then after a possible change of indices, we may assume that

 D C Si and that the interior of D is disjoint from S2. The curve y bounds discs
 D1 and D2 on S2. Now form

 S3=DUD1 and S4= D U D2.

 Note that if both S3 and S4 are boundaries of balls, then S2 is also the boundary of

 a ball. So we may assume that one of them, say S3, is not the boundary of a ball.
 Then

 IS3j=jDI + Dj 1?IDIj +jD21=1S21,

 and after a small perturbation of S3 along y we get an S3* which does not bound a

 ball and I S3* < I S2 j. The existence of such an S3* contradicts the least area
 property of S2. Therefore, in the case of transverse intersection, we may assume

 that S 1 n S2 is empty.
 In [MY1] it was shown that S1 intersects S2 transversely except in a finite

 number of points and that the intersection at the nontransverse points looks like a

 finite even number of rays intersecting at a point. The type of approximation

 procedure used in the proof of Theorems 5 and 6 in [MY1] shows that we may

 assume that S1 and S2 intersect transversely which reduces us to the case
 considered above. This completes the proof of the lemma.

 THEOREM 3. A covering space of an irreducible orientable three-dimensional
 manifold is irreducible.

 Proof Since in the above theorem we shall be dealing with manifolds N

 which are not necessarily compact and may have boundary, we recall that a

 three-dimensional manifold N is called irreducible if every two sphere S2 in N

 bounds a ball in N. Clearly, if some cover of N is not irreducible then the
 universal cover of N is also not irreducible. Hence we need only show that the

 universal cover of N is irreducible.

 Suppose now that N is irreducible but its universal cover 7T: N - N is not

 irreducible. Let S2 be a two sphere in N which does not bound a ball. If S2 does
 not bound a compact region of N, then it follows that S2 is homotopically
 nontrivial in N and hence that the second homotopy group of N is nontrivial. By

 the sphere theorem, there exists an embedded sphere S in N which does not

 bound a ball. Thus we may assume that such an S2 is the boundary of a compact
 region R of N. Van Kampen's theorem actually shows that R is simply connected

 and hence R is a fake ball.
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 Let R be as above and r: N N be the universal cover of N. Consider the

 compact set X C N which is the union of the compact set 7r(R) and all the balls

 B in N such that aB C 7r(R). By a simple general position argument we may

 assume that both 7r(R) and X are manifolds (possibly) with boundary. Since N is

 irreducible every two sphere in N bounds a ball. It follows from the definition of

 X and the sphere theorem [HJ] that the second homotopy group of X is zero and

 that every two-sphere in X is the boundary of a ball in X.

 Let P: X -- X be the universal cover of X. Since g|7T _j''(X): '7-'(X) -* X is
 a covering space containing the fake ball R, the universal cover X also contains a
 fake ball. Now choose a metric on X so that the boundary of X is convex and lift

 this metric to X.

 Next consider a sequence of two spheres C { 'Sk}=l such that Sk is not the
 boundary of a standard ball and such that the areas of the spheres in C converge

 to the infimum of the areas of such spheres. (Note that such spheres exist or

 otherwise X and hence N are irreducible homotopy spheres.)

 By Lemma 1 and an application of the covering transformations, we may

 assume that there is a fixed compact set C in X which is the closure of a

 fundamental region of the covering P: X -- X and such that I Sk n C I> e for
 some fixed E > 0. Therefore we may assume from the Existence Theorem 1 and

 the fact that X contains no projective planes that there exists a two sphere Si
 which does not bound a ball and which has least area with this property.

 Now let T: X -- X be any nontrivial covering transformation. If T(S1)
 intersects S1 nontrivially, then Lemma 3 shows that T(S1) = S1. Since the

 subgroup G of covering transformations which leave S1 invariant acts freely as a

 group of isometries, G must be isomorphic to the trivial group or to Z2. If G is

 isomorphic to Z25 then S1 descends to an embedded projective plane in N. As N
 is orientable and irreducible, N is then actually diffeomorphic to the three-dimen-

 sional projective plane and hence N= S3 which is irreducible. Therefore, we
 may assume that when T is a nontrivial covering transformation, T(S1) n S1 = 0.

 Since T(S1) is disjoint from S1 for all nontrivial covering transformations of

 the covering X -- X, the sphere S1 descends to an embedded sphere S in X. Since
 N is irreducible, S bounds a ball B in N and by the definition of X this ball is

 contained in X. The ball B lifts to a ball B in X such that the boundary of B is Si
 This contradicts the defining property of S as being a sphere in X of least area

 with the property that it does not bound a ball. This contradiction shows that
 X N is an irreducible homotopy sphere.

 Remark. When M is irreducible and is not orientable, the universal cover

 need not be irreducible as was shown by W. H. Row [RW]. However, as is clear

 from the proof of Theorem 3, this can only happen if the nonorientable M

 contains an embedded two-sided projective plane.
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 Lemma 3 can also be used to generalize the equivariant group action

 theorem given in [MY2] to the case where the prime factors are allowed to be

 homotopy three spheres. An interesting application of this generalized equiv-

 ariant group action is the following:

 THEOREM 4. Let N be a compact orientable nonprime three-dimensional

 manifold whose prime decomposition contains exactly one copy of some prime
 nontrivial homotopy sphere S3. Then every orientation preserving diffeomorphism

 of M has infinite order.

 Proof. The equivariant group action theorem in [MY2] as generalized in the

 above remark implies that Aa periodic diffeomorphism f: N -- N induces a
 periodic diffeomorphism of S3 which has fixed points. The proof of the gener-

 alized Smith conjecture in [SC] states that S3 does not have an orientation

 preserving periodic diffeomorphism with fixed points. This contradiction proves

 the theorem.

 8. Topology of complete three-dimensional manifolds with positive Ricci

 curvature and a geometric characterization of a three dimensional

 handlebody

 The existence of topological obstructions to the existence of certain metrics

 with positive curvature, positive Ricci curvature or positive scalar curvature have

 been found. In dimension three, one expects to be able to give more complete

 information. In fact, recently R. Schoen and S. T. Yau [SY2] have proved that a

 complete noncompact three dimensional manifold N whose Ricci curvature is

 positive is diffeomorphic to R3. Their result depends in part on the results of this
 paper and in particular they need the following theorem.

 THEOREM 5. Let N be a compact orientable three-dimensional Riemannian

 manifold with non-negative Ricci curvature whose boundary, possibly empty,
 has non-negative mean curvature with respect to the outward normal. Then
 either

 (1) N is covered by an irreducible homotopy sphere, or

 (2) N is diffeomorphic to a three dimensional handlebody, or
 (3) N is covered by a Riemannian product S2 X S' or S2 x [0, C] with a

 metric of non-negative Gaussian curvature on S2, or
 (4) N is flat and is covered by T3 or S' X S' X [0, C].

 Before we prove Theorem 5, we shall need the following geometric char-

 acterization of a three-dimensional handlebody.
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 PROPOSITION 1. Let N be a compact three-dimensional Riemannian mani-

 fold with non-empty boundary. N is a handlebody if and only if for every
 compact surface E in the interior of N and for every positive number E there

 exists a surface Y' isotopic to E such that I YI < . Actually L will be a
 handlebody if and only if the isotopy class of a surface parallel to a boundary
 component contains surfaces of arbitrarily small area.

 Proof of Proposition 1. First note that if N is a handlebody, then the area of
 any compact surface can be shrunk down in a standard way to a one-dimensional
 complex in such a way that the area of the surface approaches zero with further
 and further shrinkings. Hence we shall only be concerned with the proof of the
 converse of the above statement.

 More generally, if M is a fixed compact Riemannian manifold, possibly with

 boundary and f: L -: M is a mapping of a compact orientable surface in M such
 that the homotopy class of f contains surfaces of arbitrarily small area, then if E
 has genus g, there will exist g homologically independent pairwise disjoint curves
 on L: whose images are very short for some surface f' homotopic to f. In
 particular, in the above case there exist g homologically independent pairwise
 disjoint curves on L whose images under f are homotopically trivial in M (since
 the curves are homotopic to very short curves).

 We shall now apply the result referred to in the previous paragraph to a
 particular surface al in N. Let al be a surface parallel to some component al of
 aN. In other words, a is just a slightly pushed into the interior of N. If the area
 of 3l gets arbitrarily small in its isotopy class, then there exists a collection

 r = {Y1,. . , y.} of pairwise disjoint homologically independent Jordan curves on
 al which are homotopically trivial in N. Since al is isotopic to a surface a of
 small area, the proof of Lemma 1 shows that a* is contained in a handlebody. As
 two surfaces that are isotopic in N differ by a diffeomorphism it also follows that
 a is contained in a handlebody H in N.

 By Dehn's lemma [HJ] the curves in r bound a pair-wise disjoint collection

 of disks 6)= {(D1,...,D.} and clearly the interiors of these disks are, after a
 possible perturbation, contained in the component C of N- a, which is disjoint
 from a and this C is contained in the handlebody H.

 ASSERTION. C is a handlebody.

 Proof of the assertion. First note that elementary surface topology shows

 that a -( U F) is a connected planar domain. Thus the surface E C C obtained
 by surgery along the disks in 63) is a two sphere. Since E C C C H, Alexander's
 theorem implies E bounds a ball B. From the construction of E it follows that C
 is a ball with one-handles attached. Thus C is by definition a handlebody which
 proves the assertion.
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 The proposition follows from the above assertion since the region between

 ac = a1 and al is diffeomorphic to aC X [0, 1] and hence C is diffeomorphic
 to N.

 Proof of Theorem 5. We first prove that if N contains an embedded oriented

 two sphere S of least area in its isotopy class, then (3) holds. Let St, for small t, be
 the spheres of distance t from S where we use positive t for surfaces on the

 right-hand side of S and negative t for the surfaces on the left-hand side of S.

 Then from the fact that the mean curvature of S is zero and the Ricci curvature

 of N is non-negative, it is standard to use the second variational formula to show

 that At ? 0. It is also known that At = 0 in an open neighborhood of S if and

 only if a/at defines a parallel vector field in that neighborhood.

 Integrating Att ? 0 in a region bounded by S and Se, we find that the area of

 S, is not greater than the area of S and they are equal if and only if At = 0 in that
 region. Since S has least area in its isotopy class, the area of S, is not less than the
 area of S and hence At= 0 in a neighborhood of S and a/at defines a parallel

 vector there. Therefore, a neighborhood of S is isometric to a Riemannian

 product S X (-c, e).

 Now let N be the universal cover of N and S be a component of the inverse

 image of S in N. Then the geodesics orthogonal to S cannot intersect S more than

 once; otherwise we can find a closed Jordan curve which has nonzero intersec-

 tion number with 5, in contradiction to the simply connectivity of N. If N has no
 boundary, then from the conclusion of the above paragraph, N is isometric to

 S X R. If N has boundary, then N must be isometric to a product of S with an

 interval. In fact, if c is the first number > 0 so that the region between S, and S
 is isometric to S X [0, c] and S? n a N # 0, then by the maximum principle, one

 can prove that a component of aN must be equal to SC. In this way, we can prove
 that N must be isometric to a product of S with an interval.

 Now let us assume that (3) does not hold. Then the above arguments show

 that N admits no embedded oriented two sphere of least area in its isotopy class.

 Hence as in the proof of Theorem 3, we conclude that every sphere in N bounds
 a ball and N is irreducible.

 If aN =# 0, we can apply Proposition 1 to conclude that either N is a
 handlebody (and (2) holds) or N admits a compact embedded minimal surface E
 with the following properties. Either : is orientable and has least area in its

 isotopy class or E is non-orientable and the area of the nearby level surfaces of

 the exponential map applied to the unit normal line field of E have area not less
 than twice the area of L:. In the latter case, we can take a double cover of N so
 that we can assume E is orientable. By the second variational formula (see (1.5)),
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 we can prove that E is either a sphere or a flat torus. By considering the covering

 of N associated to the subgroup 'r1(E2) of 7rT(N), we can apply our previous

 argument to prove that N is covered isometrically by the product of l with an

 interval. Hence either (3) or (4) holds.

 If N has no boundary, then the splitting theorem of Cheeger-Gromoll [CG]
 shows that either the universal cover N of N is compact or isometric to R3, or

 isometric to the product of a compact surface of genus zero with the straight line.

 If N is compact, then it is a homotopy sphere. Now N must be irreducible

 because otherwise it contains a sphere with least area in its isotopy class and the

 above arguments show that this is a contradiction. This finishes the proof of

 Theorem 5.

 COROLLARY. Suppose N is a compact three dimensional orientable Rieman-

 nian manifold with non-negative Ricci curvature whose boundary, possibly

 empty, has non-negative mean curvature with respect to the outward normal. If

 : is a compact embedded orientable minimal surface in N, then one of the
 following holds:

 (1) l is a Heegard surface.

 (2) N is flat and L is totally geodesic.
 (3) N is isometric to S2 X S' or S2 X I with a product metric and E is one

 of the sphere factors.

 (4) N is diffeomorphic to P3 minus a ball or is diffeomorphic to P3#p3
 where P3 is a three dimensional projective space. In this case, E is a totally
 geodesic sphere in N such that each component of N -z is isometric to the

 nontrivial interval bundle over p2 induced as a Z2-quotient of S2 X [0,1] with a
 product metric by an isometry (x, t) (-x, -t).

 Proof Since E is orientable, N \ E consists of one or two components. We

 deform L isotopically in each of these components to obtain surfaces with least

 area. If, for each of these components, the minimal surface of least area does not
 exist, then according to Theorem 1 and Proposition 1, each of these components

 is a handlebody and L is a Heegard surface. Hence we can assume that for at

 least one component of N -A , E can be deformed isotopically to a surface of

 least area. As in the proof of Theorem 5, we can take a covering N of N so that N
 is either isometric to the product of a surface of genus zero with an interval or

 isometric to the product of the flat torus with an interval. From the way that we

 constructed this isometry, we know that a lift of E in N is disjoint from a

 spherical factor or a torus factor. By moving these factors along the interval and

 applying the maximum principle, we conclude that L must be one of these

 factors. Hence either (2), (3) or (4) holds.
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 COROLLARY. Let N denote a compact three-dimensional manifold with

 positive Ricci curvature. If N admits an embedded minimal sphere, then N is

 diffeomorphic to the three-dimensional sphere.

 Proof Suppose that there exists an embedded minimal sphere S2 in N. Then

 since the fundamental group of N is finite and S2 is two-sided in N, this sphere

 must disconnect N into two regions R1 and R2. It follows from Theorem 5 that

 R1 and R2 are both balls and hence that N is diffeomorphic to the three-sphere.

 Remark. It is conjectured that if N is any compact simply connected

 three-dimensional manifold, then it admits an embedded minimal sphere.

 9. Compact minimal surfaces in complete manifolds with non-negative
 Ricci curvature

 In this section, we generalize some of the theorems in the previous section to

 non-compact manifolds.

 THEOREM 6. Let I be a compact minimal (embedded) surface in a complete
 non-compact orientable three-dimensional manifold N with non-negative Ricci

 curvature-. Then N is isometric to a product of L with a straight line.

 Proof If N has two ends, then by the splitting theorem, N is isometric to a

 product of a surface with a straight line. By looking at the level surface which

 touches Y, one sees that the image of Y is equal to one of these level surfaces.

 Hence we can assume that N has only one end. Let N1 be the component of
 N\ L which contains infinity. Then WN1 has non-negative mean curvature with

 respect to the outward normal. By using an argument in Schoen-Yau [SY2], we

 can minimize the closed surfaces in N1 which are homologous to aN1. In this way
 we obtain a stable minimal surface (possibly non-compact) with finite area.

 However, by the theorem of Fisher-Colbrie and Schoen [FS], this stable minimal

 surface is totally geodesic and has non-negative curvature. Since a non-compact
 complete surface with non-negative curvature has infinite area, this stable surface

 must be compact. The arguments in the previous section show the validity of the
 theorem.

 10. The topological uniqueness of certain minimal surfaces in compact

 three-dimensional manifolds with non-negative scalar curvature

 Under certain geometric restrictions on the metric and on the topology of N.
 some global topological information can be found concerning the placement of
 an embedded minimal surface Y in N. An outstanding example of such a global
 relationship was given by H. B. Lawson [LH] who proved that if N is a
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 three-sphere with a metric of positive Ricci curvature, then two embedded

 compact minimal surfaces of the same genus in N are ambiently isotopic in N.

 The same type of uniqueness result continues to hold if the Ricci curvature is

 non-negative and N is diffeomorphic to S3 or S2 X S' as was shown by W. Meeks
 in [MWI].

 We shall now generalize the above stated uniqueness theorems to certain

 manifolds whose scalar curvature is non-negative.

 n

 THEOREM 7. Let X X3 # 52 X S' be equipped with a Riemannian metric

 of non-negative scalar curvature. Let l be a compact embedded orientable

 minimal surface in X. Let N,, j 1 and/or 2, be a component of X -L and
 define I(Nj) to be the rank of the image of the induced map i*: ?T2(NA)
 H2(Ni, Z2). If A' is another embedded orientable minimal surface of the same
 genus in X, then there exists a diffeomorphism of X taking L to A' if and only if
 the number of components of X - l is the same and if the corresponding indices
 I(NI) are the same.

 Proof of Theorem 7. The result is well-known for L of genus 0; hence

 assume genus of l > 0. We shall first consider the case when L disconnects X

 into two components. Let N1 be one of these components. By the geometric

 sphere theorem in [MY2] there exist pairwise disjoint minimal spheres S1, . ., SI(N)

 which generate the image of the induced map i*: 7r2(Nl) -* H2(N,5 Z2). Let Y1
 be the geodesic closure of N1 - UNi)Si. Similarly we define N2, the spheres
 S*... .S*N) and then define Y2 to be the geodesic closure of N2 - UI(N2)S*

 ASSERTION 1. Y1, and similarly Y2, is a handlebody with a finite number of
 balls removed.

 Proof of Assertion 1. Since the boundary of Y1 has zero mean curvature the

 generalized loop theorem in [MY2] with the more general boundary value
 properties given in [MY3] yields a pairwise disjoint collection of minimal disks

 {D ,. .D1.. ,Dk} with aDi C aY, and such that the normal subgroup of 7rl(aYl),
 generated by the curves IF {aDi, ... , aDkl}, is the kernel of i*: 7r,(aY,) -q>(Y1).

 Let W be the geodesic closure of Y1 - Ui Di. By construction, the boundary
 surfaces of each component of W are incompressible in W. Since aW has

 non-negative mean curvature on its smooth parts and its interior angles are less

 than 1800, each surface in aW can be minimized in its isotopy class by pinching
 off a finite number of spheres (see the discussion of the minimizing process in the
 previous sections). Thus if some component of aW has positive genus, then W

 admits a positive genus stable minimal surface which is impossible if X has

 positive scalar curvature. In general, an argument due to Bourguignon (see [SY1])
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 says that we can approximate the metric of X by metrics with positive scalar

 curvature. Thus we may assume that each component of aW is a sphere.

 Since aW consists of spheres and each of these spheres disconnects Y1, a

 straightforward topological analysis using Alexander's theorem shows that each

 component of aW is a two-sphere which bounds a ball with a finite number of

 open balls removed. Therefore, Y1, which is obtained from W by attaching

 one-handles, is a handlebody with a finite number of open balls removed which

 then proves Assertion 1.

 Now consider the manifold K = X - (U Si U U S,*). This manifold is dif-

 feomorphic to a manifold Z which is the connected sum of n - I(N1) I(N2)
 copies of S2 X S1 and then with 2(I(N1) + I(N2)) closed balls removed. After
 filling in the missing balls to get Z*, Assertion 1 shows that E is a Heegard

 surface in Z*. Waldhausen's uniqueness theorem [W] for such Heegard splittings
 implies that E is unique up to isotopy in Z modulo the condition stated in the

 theorem concerning the number of ends of Z in each component of Z - E. This

 fact is evidently equivalent to the uniqueness statement in the theorem in the

 case that Y disconnects X.

 Suppose now that E does not disconnect X and let N = N1 and S1,.. SI(N1)
 be as before and let I = I(N1).

 ASSERTION 2. Consider the spheres S1,... SI in X under the natural projec-
 tion 7T: N1 -> X. If T denotes the geodesic closure of X - UiSi, then Y discon-
 nects T.

 Proof of Assertion 2. Let E be considered under the natural inclusion as one

 of the two components of WN. If the assertion were to fail, then by intersection

 theory with Z2-coefficients there would exist an embedded arc y: [0, 1] -Y
 such that y(O) e E and y(l) lies on the other component of aY1 and y is disjoint

 from the spheres S1,. . ,SI. Let W and 6D = {D1,... . DR } be as in the proof of
 Assertion 1. There, each component of aW must be a two-sphere.

 The sum of the boundary spheres Sj*, S. ... , Sn* of W arising from surgery
 on E are under the natural projection 7T: W -* Y1 homologous to E in Y1. In fact,
 after simplicial subdivision, E is equal to the Z2-cycle 17T(Sr). Therefore 2 is
 homologous as a Z2-cycle to a sum of some number of the boundary spheres of T

 which generate the image of I*: 72(T) -* Ha( T, Z2). However this last fact is
 impossible since [ ] A [y] =# 0 where

 A: H2(T, Z2) X H1(T, aT; Z2) -Z2
 is the intersection pairing. This contradiction proves Assertion 2.

 Now consider I C T. Since T is diffeomorphic to the connected sum of

 n - I copies of S2 X S1 with a total of 2I open balls removed and : disconnects
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 T into two pieces, Assertion 1 shows that these pieces are handlebodies each with

 I open balls removed. Thus, by the previously considered case where l separates

 X, l is uniquely defined up to isotopy in T. Therefore, the number I determines

 2 up to a diffeomorphism of X. The proof of this last case completes the proof of

 the theorem.

 COROLLARY 1. If X is the three-sphere with a metric of non-negative scalar

 curvature, then two embedded compact minimal surfaces of the same genus are

 isotopic.

 Proof Let l be a compact embedded minimal surface in X. Since H2(X, Z2)

 is zero, l separates X into two regions N1 and N2 and hence l is orientable. The

 usual application of the sphere theorem and Alexander's theorem shows that

 7T2(N, Z2) is zero. The corollary now follows from the previous theorem.

 COROLLARY 2. If X is diffeomorphic to S2 X S1 and has a metric of
 non-negative scalar curvature, then there are exactly three distinct isotopy classes

 possible for an embedded compact orientable minimal surface 2 in X of a fixed
 genus. The three distinct classes are as follows:

 (1) 2 does not separate X and 2 is isotopic to S2 X { 1) with trivial handles

 attached.

 (2) 2 is a Heegard surface in X.

 (3) 2 separates X into two regions, one of which is a handlebody and the

 second a handlebody connected sum with S2 X S1.

 Proof. The proof of the corollary consists of just tracing the proof and

 applying the statement of Theorem 7.

 Remark. There exist metrics on S2 X S1 with positive scalar curvature

 which have all the distinct possibilities stated in Corollary 2. For example, let y:

 [0, 1] - R4 B4 be a smooth embedded arc which intersects the unit ball B4
 orthogonally in exactly two close points p = a(O) and q = a(l). Let N1 be the

 union of B4 and a very small --neighborhood A of y. Then after a small

 Co-perturbation N of N near p and q, aN has a metric of positive scalar
 curvature.

 Now let l be an example of an embedded minimal surface in S3 and rotate

 l to get 21 so that p and q both lie in the same component of S3 _ 21 (this is
 possible since p and q are close), and such that the metric near 2 1 in X is the
 same as the metric in 3 (ThiS is possible since the metric on N1 is perturbed
 only in a very small neighborhood of each of the points p and q.) Such a surface

 2 1 is of type (3) given in Corollary 2. With the same metric on aN we can create
 an example of type (1) on 8N. For this construction, just rotate 2 in S3 to get 22
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 with p and q in different components of S3 - 2, and such that the metric near
 22 in aN' is the same as the metric in S3. Note that by taking small rotations of
 21 and E2 in WNl, these minimal surfaces are each part of two six-dimensional
 families of minimal surfaces. An example of case 2 occurs as the totally geodesic

 torus in the standard product metric on S2 X S1.

 11. Complements of minimal surfaces

 In this section, we study non-compact properly embedded minimal surfaces,

 in a complete manifold with non-negative Ricci curvature.

 LEMMA 4. Let N be a complete Riemannian manifold with boundary. If the

 dimension of N is less than eight, the boundary of N has non-negative mean

 curvature with respect to the outward normal and the boundary aN has at least

 two components, then there exists a properly embedded stable codimension-one

 minimal submanifold in N.

 Proof If aN has at least two components, al and a2, then the component a,
 represents a nontrivial class in Hin-(N, Z2) where Hfi(N, Z2) denotes the i-th
 homology group of N with chains being locally finite singular chains in N.

 Consider a collection A1 C A2 C ...An C ... of compact submanifolds
 (with boundary) of al such that the union Ui Ai = al As the boundary of N has
 non-negative mean curvature with respect to the outward normal there exists (see

 [MY3]) for each aAi an area minimizing regular current Ci in N with aCi = aA
 and the Z2-cycle Ci + Ai is a Z2-boundary of a locally finite Z2-singular chain.
 Since we are using Z2-coefficients, it is clear that the area of Ci cannot build up
 locally in N. Thus the usual convergence theorems show that a subsequence of

 the Ci converge to an embedded minimal submanifold E of N with the property

 that : represents the same Z2-homology class as a,. By construction : is stable in
 the sense that if A is a compact (n - 1)-dimensional submanifold of 2 , then LA
 has least area among currents in N which have boundary aA and are Z2-homolo-

 gous (mod aA) to the singular chain represented by LA.

 THEOREM 8. Let N be a complete three-dimensional orientable Riemannian

 manifold with non-empty boundary. If the boundary of N has non-negative mean

 curvature with respect to the outward normal and the scalar curvature of N is

 non-negative, then either:

 (1) N contains an embedded stable minimal sphere or a proper embedded

 stable minimal surface which is a plane, a flat cylinder or a flat torus, or

 (2) The boundary of N is connected.
 Furthermore, in case (1), a cylinder or a flat torus can occur only if N is flat.
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 COROLLARY 1. If 2 and 22 are complete, proper and immersed minimal

 surfaces in the three dimensional euclidean space R3, then one of the following
 holds:

 (1) Either 21 or 22 is a linear plane.
 (2) There exists a linear plane P in R3 disjoint from El and :2 such that E

 and 22 lie in different components of R3 _ P.

 (3) 1 and :2 intersect nontrivially.

 Proof of Corollary 1. Suppose that neither case 1 nor case 3 occurs. Let N

 be the geodesic closure of the component of R3 _ (2 1 U 22) which has as
 boundary part of 21 and part of :2. Then N satisfies the hypothesis of Theorem
 8 except that the boundary of N is non-smooth at some self-intersection curves of

 21 or 22. However, the interior angles of the non-smooth portion of aN are less
 than or equal to 1800 and the argument given in [MY3] continues to hold for N

 with such boundary. Since aN is not connected we can apply Theorem 8. Since

 the only stable minimal surface in R3 is linear (see [FS] and [CP]), (2) must hold.

 COROLLARY 2. Let N be as in the theorem except that the Ricci curvature of
 N is positive. Then either N is a handlebody or else aN is non-compact and
 connected.

 Proof of Corollary 2. This corollary follows from Theorem 5, Theorem 8 and

 the stability theorem of Fischer-Colbrie and Schoen [FS].

 Proof of Theorem 8. From Lemma 4, if the boundary of N is disconnected,

 we can deform one of the components of N to the sum of some properly

 embedded minimal surfaces. We can assume that they are homologous to that

 component of aN in H2(N, Z2) and that they have least area in this class. These

 surfaces are orientable because they form the boundary of an orientable mani-

 fold. However, stable orientable surfaces in complete three-dimensional manifolds
 with non-negative scalar curvature were studied by Fischer-Colbrie and Schoen

 [FS] and we have proved (1) stated in the theorem.
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