AN EQUIVARIANT SPHERE THEOREM

M. J. DUNWOODY

1. Introduction

Let M be a connected 3-manifold acted on by a group G. Suppose M has a
triangulation invariant under G. In this paper it is shown that if there exists an
embedded 2-sphere S which does not bound a 3-ball, then there exists such an S for
which gS = SorgSn S = ¢ forevery ge G. This result was proved by Meeks, Simon
and Yau [3] using analytic techniques. The proof given here is self-contained and
clementary.

The proof involves looking at embedded 2-spheres which are in general position
with respect to the given triangulation. Such a sphere is called minimal if it does not
bound a 3-ball and the number of intersections with the 1-skeleton of the triangulation
is the smallest possible. The key result proved in this paper is that given a finite set
of minimal spheres satisfying a general position condition, there is a finite set of
‘standard’ disjoint minimal spheres whose union has the same intersection with the
1-skeleton as the original spheres. The set of disjoint spheres is unique up to a
homeomorphism of M which fixes the 2-skeleton.

In §4 it is shown that if G\ K is finite then there is a G-equivariant decomposition
of M with irreducible factors. We are then able to deduce from the ordinary loop
theorem an equivariant version of the projective plane theorem. In §5 the arguments
of the previous sections are modified to provide a proof of the equivariant loop
theorem [2].

I think that many of the topological results obtained using analytic minimal
surface theory can also be derived using the techniques of this paper.

I am grateful to Andrew Bartholomew for pointing out an error in an earlier
version of this paper. I thank both Peter Scott and the referee for their helpful
comments.

2. Minimal spheres

Let M be a connected 3-manifold. Suppose M is triangulated, that is, there is a
3-dimensional simplicial complex K such that M = | X|.
We consider surfaces S = M with the following properties:

S1. S can be triangulated (using some subdivision of K).

S2. S and X are in general position. Thus if K* is the 1-skeleton of K, SN | K|
is a finite set of points.

If S satisfies S1 and S2 let || S| = #(Sn|K*)).

PROPOSITION 2.1. Let S < M satisfy S1 and S2 and suppose S is a 2-sphere. If
| S|l =0, then S bounds a 3-ball in M.
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Proof. Let o be a 2-simplex of K. Now |a| n S is a set of disjoint closed curves.
The Proposition is proved by induction on n(S) = # {c¢ | cisacomponentof|a| N S
for some 2-simplex ¢ of K}.

If n(S) = 0 then S is contained in a 3-simplex and the result is clear. If not choose
a closed curve £ in S such that £ = 0A where A is a disk contained in some 2-simplex
of K and A contains no other such curve. Carry out surgery along A and obtain two
2-spheres S, and S, which we may assume satisfy S1 and S2. Now
n(S,)+n(S,) = n(S)—1. Thus, by induction, S, = 0B, and S, = 0B, where B, and B,
are 3-balls in M. Now S, n S, = &. Thus either S, « B,or S« M—B,. If §, c B,
then we may assume B, < B, by the Schoenflies Theorem. But now there is a 3-ball
B obtained by removing from B, a neighbourhood of A —¢ together with the interior
of B, and 0B = § as required. A similar argument works if S, < B,. If neither of these
cases occurs, B,N B, =& and we take B to be the union of B,, B, and a
neighbourhood of A.

DEFINITION. A 2-sphere S = M satisfying S1 and S2 is called minimal if S does
not bound a 3-ballin M and || S || takes the smallest value consistent with this property.

Let Q(M) denote the set of minimal 2-spheres in M. The constant || S|, Se Q(M)
is denoted k = k(M). Thus k > 0 by Proposition 2.1.

Two surfaces S, $” = M satisfying S1 and S2 are said to be disk equivalent if there
is a sequence S = S, S,,...,S, = S of surfaces satisfying S1 and S2 and such that
for each j, 1 < j < n, there exist disks A; = S;, A; = S;_, such that A;UA; bounds a
3-ball B;c M, S§;—A;=S8;,—4; B;nS;=A;and B;nS;_, = A,

It is easy to see that disk equivalent surfaces are isotopic.

PROPOSITION 2.2. Let SeQ(M). There exists S'eQ(M) such that S’ is disk
equivalent to S and for each 2-simplex ¢, |a|NS" < |o|nS,and|a|nS contains no
simple closed curves.

Proof. Suppose that |o|n S contains a simple closed curve £. Choose ¢ so that
it is innermost. As in Proposition 2.1 do surgery along the disk in o bounded by ¢
and obtain surfaces S, and S,. Clearly | S| = | S,|l + | S, |. If neither || S, | nor
| S, || is zero then by the minimality of || S| both S, and S, must bound balls and
a repeat of the argument of Proposition 2.1 shows that S bounds a ball. Hence we
may assume || S, || = 0. But now by Proposition 2.1, S, = 0B, where Bis a 3-ball. Also
S, N B = & otherwise S, would bound a ball again giving a contradiction. It follows
that S and S, are disk equivalent. Repeating this argument we eventually find S” such
that |o| N S’ contains no simple closed curves for each 2-simplex o.

PROPOSITION 2.3. Let SeQ(M). Let o be a 2-simplex of K. Let ¢ be a component
of |a | N S such that c is not a simple closed curve. Then c is a line joining points on distinct
faces of o.

Proof. By Proposition 2.2 we can assume that SN |ca| consists of lines joining
points on the boundary of |o|. Suppose there is a line £ joining two points a, b on
the same edge e. By replacing ¢ by another line in SN |a| if necessary it may be
assumed that the disk A in | ¢ | bounded by £ and the interval ab in e satisfies AN S = ¢.

Let R be a regular neighbourhood of A in an appropriate subdivision of M. Now
OR is a 2-sphere and RN S is a simple closed curve ¢’. Also £ bounds disks A,, A,
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indRsuchthat A, || =0and (A, | =2.In S, ¢ spans a disk A, such that | A; || = 2.
Now S is disk equivalent to S, in which A, is replaced by A,. But S; bounds a ball
if and only if § bounds a ball. Since || S, | = k—2 we have a contradiction.

PROPOSITION 2.4. Let SeQ(M). There exists S'e QM) such that Sn|p|=
S’ n|p| for every 1-simplex p of ¢ and for each 2-simplex ¢ of K, S' 0 |o| is a set of
disjoint straight lines, that is, the convex hulls in | a | of their end points.

Proof. By Proposition 2.2 and the subsequent remark it can be assumed that
SNn|e| contains no simple closed curves. By Proposition 2.3 the components of
S n|o| join points on distinct edges. Thus || is as in Fig. 1. It is easy to see that
there is a homeomorphism u,:|a| — | o| which fixes 3| ¢| and which maps the lines
of Sn|e|into straight lines. If y is a 3-simplex, there is a homeomorphism

welyi=1yl

which restricts to u, for each face g of y. Clearly there is a homeomorphism u: M - M
which restricts to x4, on each 3-simplex y. Put §" = uS.

FiG. 1.

PROPOSITION 2.5.  Let Se Q(M). If S n | & | contains no simple closed curves for each
2-simplex o then for each 3-simplex y, SN |y|is a union of disjoint disks. Each disk
intersects | y*| in either 3 or 4 points.

Proof. Suppose SN |y|hasa component ¢ which is not a disk. There is a simple
closed curve £ in ¢—3|y| which does not bound a disk in ¢. Now ¢ bounds a disk
A in the interior of |y|. Assume that A and S are in general position. Look at an
innermost circle in A0 S. If this bounds a disk in || N S then we can alter A so as
to remove this intersection. Eventually we obtain a disk A’ such that /" =0A’ = A'n S
and ¢’ does not bound a disk in |y| N S. Now do surgery along A’ so that we obtain
new 2-spheres S, and S, from S. A repeat of the argument of Proposition 2.2 shows
that we may assume || S, | =0. But if || S, || = 0 it means that S, can only intersect
a 2-simplex in a union of simple closed curves. By our hypothesis on S we see that
S, N|o| = & for every 2-simplex o. Thus S, = |y| which contradicts the fact that ¢/
does not bound a disk in || n S. Hence SN |y|is a union of disjoint disks.

Suppose there is a component D of Sn|y| which intersects an edge of y in more
than one point. Then there is a disk A such that A < |y|, An?d|y| is an interval ab
inanedgeofyand An S = 0A n Sisaline joining a to b. Now repeating the argument
of Proposition 2.3 shows that S is not minimal.

If D intersects each edge of | y| in at most one point it follows that, for each 2-face
o of y, DN o] is either empty or consists of a single line joining distinct edges. The
Proposition follows easily.
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DEFINITION. A surface S satisfying S1 and S2 is said to be standard if for every
2-simplex o of K, SN |ao|is a union of disjoint straight lines and for every 3-simplex
y of K, SN |y|is a union of disjoint disks.

PROPOSITION 2.6.  If S is a minimal sphere, then there is a standard minimal sphere
S such that SN|K'|=Sn|K|.

Proof. This is immediate from Propositions 2.4 and 2.5.

The set of standard minimal spheres in M is denoted Q(M).

Let §,, S, be standard surfaces. We say that S, and S, are well placed if they are
in general position, |K*|nS, NS, =, and for each 3-simplex |p| there is no
component of S, NS, which lies entirely in the interior of | y|. Given standard S,, S,
such that S;n S, N| K| = &, we can find S} such that S is a standard surface disk
equivalent to S, and such that S, and S, are well placed.

Let S = M satisfy S1 and S2. Let £ and ¢ be simple closed curves in S,
LN K =£"n|K| = . We say that £ and £’ are parallel in S if there is an annulus
a < S such that f/uf’ =0da and || a| = 0.

PropPOSITION 2.7.  If'S,, S, are well placed standard surfaces then no two components
£, ¢ of S\ NS, are parallel in both S, and S,.

Proof. Suppose £ and ¢’ are parallel in S, and S ,. Now £ n| K?| # & since S,
and S, are well placed. Butif £ n|a| # & for some 2-simplex ¢ then £” must intersect
the same component of S, N || as £. Moreover these two points of intersection must
lie in the same component of S, N || since £ and ¢’ are parallel in S,. Hence there
must be a component of S, N || which meets a component of S, n|o| twice. But as
these components are straight lines this is impossible.

PROPOSITION 2.8. Let F < | K*|—| K°| and suppose that, for every 1-simplex p of
K, fip) = #(Fn|pl) is finite. Suppose also that for each 2-simplex o of K with faces
P1, po and p, we have f(p,)+f(p,) +f(p;) = 2m where m is an integer and f{p;) < m for
i=1, 2, 3. There exists a standard surface Sy such that Sp N|K*| = F. The surface
Sg is unique up to a homeomorphism of M which leaves | K? | fixed.

Proof. Let ¢ be a 2-simplex of K. If S, exists then Sz N)o| must be as in
Fig. 2; that is, it will consist of disjoint straight lines joining all the points of Fn|al.
Suppose there are f, lines joining p, and p,, f, lines joining p, and p, and f, lines
joining points in p, and p,. Then

fp) = By+Bs, fo,) =B, + B, fpy) = By +B,.

We know that f{p,)+f(p,)+flp,) = 2m where m is an integer. Hence §, = m—f{p,),
B, =m—fp,), B, =m—flp;). By hypothesis f,, B, and B, are non-negative and we
see that they are uniquely determined. Thus the pattern in Fig. 2 is uniquely
determined. If y is a 3-simplex of K and the points of Fin d|y|Nn F are joined in the
only way possible in @|y| so that all four faces are as in Fig. 2, then we obtain a
collection of simple closed curves in 0| y|.

These curves must bound disjoint disks in S N |y|. It follows easily that Sy exists
and Sy N | K?| is uniquely determined.
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FiG. 2.

THEOREM 2.9. Let ® ={S,, S, ..., S,,} be a finite subset of QY(M). Suppose that
ifi+#jthen S;nS;n|K'|= . Put F=F®) =|K|n(JP-,S). Then Sy is a union
of n disjoint standard minimal spheres.

Proof. The proof is by induction on n. The resuit is clear if n = 1.

Assume the result is true for n—1. Let F' = | K*| n (| J7=1 S,). We know then that
Sy is a union of n—1 disjoint minimal spheres. We can assume that Sp. = ( J2Z1 S,
Thus we may assume S;NS; = & if 1 <i<j<n—1. Also we may assume that §;
and S, are well placed, i=1,2,....,n—1. -Let I=S8,n(J!S,). Let
(@) = #({Un|K?|). If c¢(®) = 0 then, since S; and S,, are well placed, S;nS, =G
for i=1,...,n—1. Hence the Theorem is proved. Assume then that ¢(®) > 0. We
show that @ can be altered (without changing F) so as to reduce c¢(®). Now Iis a
union of disjoint closed curves in S,. Choose £ = I to be a closed curve such that
¢ = 0A where A is a smallest innermost disk in some S;, i=1,2, ..., n; that is,
InA =¢,and | A| takes the smallest possible value. In fact we can assume A  §,,.
ForifAc S,,i=1,2,...,n—1, then £ bounds a disk A" in S, and we can choose
A’ so that |A"|| <ik. If |A| < | A’ then | AUA"| < k and so AUA’ = 3B where
B is a 3-ball. Clearly S,, is disk equivalent to the 2-sphere S obtained from S, by
replacing A’ by A. But || S| <||S,]| and so we have a contradiction. Thus

|A] = || A”| and there is an innermost disk A” such that A” < A”and | A" || = || A|.
Hence we can assume A c S,. The argument above also shows that there is a disk
A'c S, forsomei=1,2,...,n—1,such that {|A"|| =| Al and 0A" = 7.

The first case we consider is when || A | < 3k. As above AUA" = 8B where B is
a 3-ball. Assume that A’'n S, #¢. Then A’ N S, consists of a set of curves parallel
to £ in S,. This is because, by the choice of Z, there is no £’ = §,, n S; which bounds
a disk A, = S; such that | A, || < | A|l. We may suppose that if C is a component
of BNS,, C# A, and Cis a disk then | C| > || A|. For if there is a component
of Bn S, such that C is a disk and | C|| = | A, then we can replace A by the
component C for which 9C is innermost in A’. Also BN S,, has no component which
is an annulus a such that || a || = 0. This is because no two components of S; n S,, are
parallel in both S, and S,,, by Proposition 2.7. Let £’ be the curve of A’ n S, which
is innermost in A’. Now ¢’ bounds a disk D in S, N M— B such that |[D|| =] A]|.
For otherwise we obtain a contradiction by doing surgery on S, along the disk D’
in A’ bounded by ¢’. Now if A = D we have a contradiction by the parallel curve
argument. If not, then by replacing D in S,, by D’ and making a small alteration in
the neighbourhood of D’ we obtain a new surface S, which is disk equivalent to S,,
but A’nS;, =(A'nS,)—{¢'}. Since Bn S, has no component which is an annulus



442 M. J. DUNWOODY

a such that |a|| =0, BnS;, has no component C # A which is a disk such that
IC|ll=1|A]|. If we repeat the argument we eventually obtain a disk D such that
A c D, giving a contradiction as required. Note that although S, has been changed
to a non-standard sphere the parallel curves giving the contradiction will occur in a
part of the sphere which has not been changed. Thus A’ n S, = ¢. The sphere S;
obtained from S; by replacing A’ by A is disk equivalent to S,. The sphere S, obtained
from S, by replacing A by A’ is disk equivalent to S,. Let U; = §; and U, = §,.
Put U;=S, if j#i and j#n Now (UuU,)n|K'|=(S;uS,)Nn|K'|. Put
o ={U,...,U,}. 1 claim that ¢(®) < ¢(®). Note that F@')= F(®). Also
U, U, ..., U, are disjoint, since S;nS; = if j=1,2,...,i=1,i+1,..,n—1,
and standardizing S; does not affect this property.

Let o be a 2-simplex of K which contains a point of . Let p, ¢, r, se 0| o | be such
that the line pg = §; and the line rs = S, and pgq, rs intersect in a point x of £. We
can assume p and r lie in the same face. Thus the situation must be as in either Fig.
3(a) or Fig. 3(b)

(@) ®)
FiG. 3.

Also either xs < A and xg = A’ or xp =« A’ and xr = A. For if, say xs < A and
xp < A’y U, n|o|would have to have a line joining p and r contradicting Proposition
2.3. If xs = A then the only intersections of rs with S,, S,, ..., S,_, occur in the line
segment rx and the only intersections of pg with S,, occur in the line segment px. A
possible configuration is shown dotted in Fig. 3.

The changed configuration on replacing ® by @’ is shown in Fig. 4.

FiG. 4.
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It can be seen that the number of intersections is reduced by at least one (¢ may
intersect ¢ more than once).

It remains to treat the case when || A | = k. In this case /=S, n(Jrz1S)) is a
union of parallel curves in S,,. For each je{l,...,n—1}, §,nS; consists of at most
one component, since we have remarked that curves cannot be parallel in both S,
and S;. In this case also then we see that A’n S, = Z. In this case we do not know
that AU A’ = 0B where B is a 3-ball. We show that after a possible relabelling that
this can be assumed. If I has more than one component then there are two possible
choices for ¢, since there are two curves in S,, which are innermost. If 7 = ¢ then there
are two possible choices for A. Thus there are always two possible choices for A. Also
there are two possible choices for A’, namely A’ and S;—A’. Suppose ¢ is a 2-simplex
containing a point of £. Let rs = S, be a component of S, N |o| containing a point
of £. The situation will be as in Fig. 5. It is always possible to choose A and A’ so

leln(S,US;U...USny)

that rx < A, px < A" where r and p are in the same face. It now follows from
Proposition 2.3 that AU A’ is not a minimal sphere and so AUA’ = 0B where B is
a 3-ball. This case now reduces to the previous case. It follows then that there is a
set ® of n disjoint minimal spheres such that F(®) = F. But by Proposition 2.8, S
must be the union of these spheres.

3. The main result

Let M, K be as in §2. Let G be a group. Suppose there is an action of G on K
(written on the left). We assume that G\ K is a simplicial complex. Nothing is lost in
assuming this, since if K does not have this property, K”, the second barycentric
subdivision of K, with the induced G-action, does have this property. The action
of G on K extends to an action on M. We assume that the stabilizer of each 3-simplex
is trivial, since any element of G which fixes a 3-simplex must fix all of M. It is easy
to see that the stabilizer of any simplex is finite.

THEOREM 3.1.  If Q(M) # &, then there exists U eSY(M) such that for every ge G
either gU=UorginU=(.

Proof. Let SeQ}(M). Let £ = {gS | geG}. Since stabilizers are finite, for each
1-simplex u of K there are only finitely many elements of £ which intersect | u#|. For
each TeX choose T" e (M) so that there is a homeomorphism 6,: T — T such that
for each 1-simplex x of K, @ induces an order-preserving bijection

0, TNnlpl—=TNnlul
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(Here we use the obvious order on |u|.) Choose the spheres T’ so that if T, # T,
then 77N T, N | 1| = & for every 1-simplex u. We do not assume that themap T—» T
is a G-map. Let J=(J{T | TeZ})n|K'|. It is possible to change the choice
of the spheres T" so that for any l-simplex g, |u|NnJ is changed to another
subset of |u|—0|x| with the same number of points. Since gX =2,
#(Inglul) = #(In|ul) for every ge G. Thus we can choose the spheres T" so that
gJ = J for every geG.

If M is compact so that K is finite then it follows from Theorem 2.9 that S is
a union of disjoint minimal spheres. Now g(S, n| K?|) = S, n| K?| for every geG.
Since G\K is a complex we can, in fact, choose S; so that gS, = S, for every geG.
Thus the Theorem is proved. If M is not compact we need to do a bit more work.

Let y, be a fixed 3-simplex of K. We can choose a finite subcomplex K, of X so
that if Ue Q(M) and | y,| N U # & then U < | K, |. Let ® be the set of those T° which
intersect | K, | and J, = ((J{T" | T'e®})n|K*|. Now Theorem 2.9 applies to ® and
so S, is a union of minimal spheres. But |K,|nJ,=|K,|nJ and so
Sy, N1 Kyl = S8, n|K,|. Thus the components of S; which intersect |y, | are in Q(M).
The Theorem follows immediately, since y, is arbitrary.

4. Equivariant decompositions

Again let M, K be as in §2. Let the group G act on K and M as in §3 so that G\K
is a complex.

Let X be a G-set of disjoint 2-spheres in M. Let N(Z) be the 3-manifold (not usually
connected) obtained from M by cutting along the 2-spheres of £ and attaching a 3-ball
to each 2-sphere in the boundary of the resulting manifold that arises from cutting
along an element of . Recall that a manifold N is called irreducible if each 2-sphere
in N bounds a 3-ball.

THEOREM 4.1.  Suppose G\K = L is finite. There is a G-set L of disjoint 2-spheres
in M such that N(Z) is irreducible.

Proof. Let X be a G-set of disjoint 2-spheres in M and suppose N(X) is not
irreducible. There exists a 2-sphere §* < N(Z) such that §” does not bound a ball. In
N(Z) there is a set Z’ of 2-spheres (all bounding 3-balls) corresponding to the elements
of Z. For each element of X there are two elements of Z’. It can be assumed that
S’ does not intersect any UeZXZ’. For if n(S) is the number of components of
S’n(|J Ul UeX’) then choose S’ so that n(S’) is smallest. A familiar argument shows
that n(S") = 0.

Since §” does not intersect any U € ¥, it corresponds in an obvious way to a 2-sphere
S < M. Since S’ does not bound a 3-ball in N(X), S does not bound a 3-ball in M.
Also S is disjoint from each 2-sphere in X. We restrict attention to those S’ for which
the corresponding S satisfies S1 and S2. Thus we can define || S’ || to be || S|. Among
such spheres S” define S’ to be minimal if || §” || takes the smallest possible value.

The action of G on M induces an action of G on N(Z). The proof of Theorem
3.1 works equally well in this situation. Thus there exists a 2-sphere S < N(Z) such
that S’ is minimal (and so " does not bound a 3-ball in N(Z) and n(S") = 0) and
g8’ =8 orgS' nS = J for every geG. Let S be the corresponding 2-sphere in M.
Put ' = ZU{gS | geG}. This is a G-set of disjoint 2-spheres. Also S is not parallel
to any UeZ, that is, there is no submanifold 4 of M homeomorphic to S% x [0, 1]
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for which 84 = SUU. The remainder of the proof of Theorem 4.1 consists of
showing that if # (G\X) exceeds a certain number then Z contains parallel elements
in different G-orbits. The argument used here is essentially that of Kneser (Hempel [1,
p. 29]). However we have to be careful since G\ M is not usually a 3-manifold.

Let 7 be a 3-simplex of K and let X be the closure of a component of

ltl-=U{S|Sez}.

Then X is a 3-cell whose boundary is made up of standard disks in 7 together with
a connected submanifold in 0r. We say that X is good if X 007 is an annulus which
contains no vertex of 7. For each 3-simplex 7, there are at most 6 bad cells X (see
(1, p. 30)). If R is the closure of a component of M—|J{S|SeX}, then R is called
good if for each 3-simplex 7 of K, Rn|t|is good in the above sense. If R is good
then it is either S® x I or the twisted I-bundle over P%. Put k(L) = dim H*(L; Z,)+ 6¢
where ¢ is the number of 3-simplexes of L. Suppose #(G\X) > k(L). Let m:M — | L|
be the projection map. If R is good then #R is good in | L|. Now | L| has at most
61 bad components and so there are at most 6z orbits of bad components in M. Let
R be a good component in M. The I-bundle structure on R maps to an /-bundle
structure on nR. If 7R is not twisted (that is, it is a trivial I-bundle), then R is not
twisted. Suppose 7R is twisted. If 7 is a 3-simplex of L, |z|n =R will consist of a
number of components X such that X no| 7| is an annulus containing no vertices of
7. For each edge e of 7 for which X n|e| # & take the mid point x, of X nje|. Let
Ay be a standard disk in X determined by the points x,. Let Z be the union of all
the disks Ay as X ranges over all components of zRN|7| and 7 ranges over all
simplexes of L. For any 2-simplex ¢ of L, Z n|o|is a union of disjoint lines joining
points on the boundary. Let z be the 1-cochain

2. > 7Z,, z(e)= #(]e|n Z)(mod 2).

Then 6z = 0. However, Z does not separate in 7R, and hence in L, since nR is twisted.
Thus z represents a non-trivial element of H'(L; Z,). The non-separating property in
7R also ensures that if R, R,, ..., R, are good components in M lying in different
G-orbits and nR,, 7R, ..., R, are all twisted, then the corresponding elements of
H(L, Z,) are linearly independent. Thus if #(G\Z) > k(L), there exists a good R in
M such that #R is not twisted. Thus R is homeomorphic to S*x I and the two
components of OR lie in different G-orbits. This completes the proof of Theorem 4.1.

Theorem 4.1 enables us to prove an equivariant version of the projective plane
theorem for compact 3-manifolds (see [1, p. 54]).

If S is a 2-sphere or projective plane in M then there is a covering map p: $% — S.
Thus corresponding to S is an element [S] of 7,(M). This element is only determined
up to action by elements of n,(M) and replacing [S] by —[S].

THEOREM 4.2. Let M be a compact 3-manifold acted on by a group G. There is
a G-set X of disjoint embedded 2-spheres and projective planes such that {[S] | SeZX}
generates ny(M) as a n,(M)-module.

Proof. Let M be the universal cover of M. There is a group G acting on M for
which there is an exact sequence

| —n(M)— G2 G— 1.
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Also if n: M — M is the covering map, then n(gm) = d(g)n(m), geG, me M. Let

= | K| where K is a 3-dimensional complex covering K, and | K| = M. Asin §3 we
assume G\K is a complex and so G\K = G\K is a finite complex. We can apply
Theorem 4.1. Thus there exists a G-set £ of disjoint 2-spheres in M such that NE)
is irreducible. Now if Se£ then S = n(S) is either a 2-sphere or a projective plane.
Let Z = {n(S) | Se£}. I claim that {[S] | SeX} generates n,(M) as a m,(M)-module.
This follows if we can show that {[S] | Se£} generates 7,(M). Now let f: S* — M be
a map in general position. Assign an orientation to S*.

Since M is simply connected the homotopy class of f determines a unique element
of my(M). Also m,(M) is isomorphic to H,(M) by the Hurewicz Isomorphism
Theorem. By making small changes to f{S?) in the neighbourhood of singularities, we
obtain an embedded oriented surface S, which represents the same element of H,()
as f(S?). If U is an embedded 2-sphere in M then [U] is in the subgroup Q of n,(M)
generated by {[S] | Se£}. This is proved in the usual way by induction on the number
of components of Un () {§ | Se&). If S, is a union of 2-spheres then [f{S?)]e Q.
If not then S, can be reduced to such a union by surgery over a finite number of
compressing disks the existence of which is guaranteed by the ordinary loop theorem.
Thus [/{S?)]€ Q and Q = (M) as required.

5. The equivariant loop theorem

Let M be a triangulated 2-manifold. Thus M = | K| where K is a 2-dimensional
simplicial complex. Suppose the group G acts on K so that G\K is also a complex.
Extend this action to M. If we assume that any embedded simple closed curve in M
separates M then exactly analogous theorems to Theorems 3.1 and 4.1 can be
obtained. In fact in order to prove an analogous result to Theorem 3.1 it is only
necessary to assume that there is a simple closed curve in M which does not bound
a disk but which does separate M. This separation property is necessary in order to
ensure that the curve does not meet a translate in a single point, when the arguments
of Theorem 2.8 could not be applied. Thus we consider simple closed curves C ¢ M
such that C is in general position with respect to K. Let Q(M) be the set of those C
which do not bound disks in M.

A 2-manifold N with 0N = @ in which every simple closed curve bounds a disk
is either R? or S% These are the only ‘irreducible’ 2-manifolds without boundary.

THEOREM 5.1. Let M be a 2-manifold with OM = (. Let M = | K| where K is a
simplicial complex. Suppose the group G acts on K and M so that G\ K is a finite complex.
Suppose every simple closed curve in M separates M, that is, suppose M is planar. There
is a G-set T of disjoint simple closed curves such that each surface obtained by taking
the closure of a component of M—\ ) {C | CeT}and attachmg disks to all the boundary
curves is homeomorphic either to R? or to S°.

Proof. As remarked above this is just a repeat of the argument of Theorem 4.1
(incorporating Theorem 3.1) adapted to 2-manifolds.

Note that the curves of I" obtained are all in general position with respect to K.
If o is a 2-simplex of K and CeT then Cn|a| will consist of straight lines joining
distinct edges. (In fact a further argument shows that Cn|o| has at most one
component.)
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THEOREM 5.2. Let M be a 3-manifold. Let M = | K| where K is a simplicial complex.
Suppose the group G acts on K and M so that G\K is a finite complex. There exists
a G-set X of disjoint disks properly embedded in M (OM N A = 0A if AeX) such that
the normal subgroup generated by T ={0A | A€X} is the kernel of the map
Iy: 1, (M) > 7, (M) induced by inclusion.

Proof. Let M be the universal cover of M. Let K and G be as in the proof of
Theorem 4.2.

Let N be a component of M. Let G be the stabilizer of N in G. The covering
map 7 induces an injective map G,\N — 0M. Now any simple closed curve in N
separates N. For if ¢ is a simple closed curve in N then ¢ bounds a disk A in M by
the ordinary Dehn’s lemma. Cutting along A separates M, for otherwise H,(M) # 0.
Hence cutting along ¢ separates N. Let Iy be the G y-set of simple closed curves in
N as given by Theorem 5.1. We can assume that if ge G then I'y)y = gI" .. Thus the
union of all the T as N ranges over all components of dMisa G-setI". If CeT and
g€ G is such that gC = C then we can assume that g does not transpose the two
components of N—C. Here N is the component of M containing C. For if there is
such a g which transposes these components, then we can replace each curve in the
G-orbit of C by a pair of parallel curves lying each side of the original curve. This
can be done so that the new set is a G-set with the required property.

If Ce " then we say that a minimal disk spanning C is a disk A such that 0A = C,
C and K are in general position and || A || takes its smallest possible value.

Let T, c " be a transversal for the G-action. For each CeT', and ge G choose
a A=A(g, C) to be a minimal disk spanning gC. We make the choices so
that A(g, C) = gA(1, C). Now for each A = A(g, C) choose A’ so that there is a
homeomorphism 6,:A — A’ which restricts to an order-preserving bijection
An|u|l— A'n|u] for each 1-simplex u. Also if A, # A, then

(Ai—0A) N (A;—3A) N ul = .

As in the Proof of Theorem 4.1 it can be assumed that the set J = {| K*|n A" | AeZ}
is a G-set. If xeJNAM so that xeC for some Cel" then we give x a weighting
w(x) = | G¢|. If xe J—OM, put w(x) = 1. We can now adapt the proof of Proposition
2.8 to show that there is a unique G-subset S ; of M such that for each 3-simplex y
of K, |y|n S, consists of a union of standard disks, which intersect if at all in a subset
of dM nd|y|, and for each xeJ there are w(x) disks containing x. Repeating the
arguments of Theorems 2.9 and 3.1 shows that S consists of a union of minimal disks
which intersect if at all on their boundaries. If CeT", there will be IGCI disks A such
that A = C. By choosing a suitable subset of these disks we obtain a G-set £ of disjoint
disks in M such that ' = {0A | AeE}.

This choice is possible because if gC = C then g fixes every disk A such that
0A = C. To see this suppose A,, A,, ..., A, are all the disks of £ containing C. We
can assume that the A; are labelled so that there is a path joining points in 0M and
containing exactly one point from A,, A,, ..., A, in that order. This order is
independent of the path chosen provided it starts on the right side. If gC = C then
g fixes the components of N— C and so g preserves the order of the disks. Thus if
gC = C then gA = A for each Ae£ such that A = C.

Cutting M along the disks of £ produces manifolds with simply connected
boundaries (either S? or R?). If a loop £ in OM represents an element in the kernel
of the map i, : 7,(dM) - n(M) then ¢ lifts to a loop in M. Thus ¢ is freely homotopic
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to a product of the loops of the form 3C, CeT'. Let £ = {znA | AeZ}. Since £ is a
G-set, it follows that Z is a G-set of disjoint disks. Also the normal subgroup generated
by {0A | AeZ} is the kernel of i,. This completes the proof of Theorem 5.2.
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